NOTA TÉCNICA

Número: Dimci/Ditel/023/2012

Referência: Medições de Campo do Sistema HD Radio na Faixa de FM em São

Paulo com a Rádio Cultura FM

ÍNDICE

APRES	SENTAÇÃO	1
SUMÁ	RIO EXECUTIVO	4
1. IN	TRODUÇÃO	9
2. SI	STEMA DE TRANSMISSÃO	9
2.1.	CARACTERÍSTICAS TÉCNICAS DO SISTEMA DE TRANSMISSÃO	9
2.2.	PARÂMETROS DE TRANSMISSÃO	13
3. E(QUIPAMENTOS E METODOLOGIA DE MEDIÇÃO	13
3.1.	EQUIPAMENTOS DE MEDIÇÃO	13
3.2.	Parâmetros de Medição	17
3.3.	METODOLOGIA DE MEDIÇÃO	18
3.4.	PLANEJAMENTO DAS ROTAS	19
4. RI	ESULTADOS DOS TESTES	21
4.1.	Comparação da intensidade de campo elétrico do sinal analógico medida	
PREVISÃ	O TEÓRICA	
4.2.	AVALIAÇÃO DA ÁREA DE COBERTURA DO SINAL DIGITAL COM RECEPTOR PROFISSIONAL	
4.2.1.	AVALIAÇÃO DA ÁREA DE COBERTURA DO SINAL DIGITAL COM RECEPÇÃO ESTÁTICA	
4.2.2.	AVALIAÇÃO DA ÁREA DE COBERTURA DO SINAL DIGITAL COM RECEPÇÃO MÓVEL	
4.3.	AVALIAÇÃO OBJETIVA DO ÁUDIO DIGITAL DE RECEPTORES COMERCIAIS	
4.3.1.	AVALIAÇÃO DO ÁUDIO DIGITAL DE RECEPTOR COMERCIAL NAS MEDIÇÕES ESTÁTICAS	
4.4.	RESULTADOS DA RECEPÇÃO ANALÓGICA FM	
4.4.1. 4.5.	AVALIAÇÃO DA ÁREA DE COBERTURA EM RECEPÇÃO ESTÁTICA	
4.5. 4.6.	IMPACTO DO SINAL DIGITAL HD RADIO SOBRE O ÁUDIO ANALÓGICO	
	DICE	
I. SI	STEMA HD RADIO	40
I.1.	HISTÓRICO E PADRONIZAÇÃO	
I.2.	CARACTERÍSTICAS TÉCNICAS DO SISTEMA HD RADIO	
I.2.1.	MODOS DE OPERAÇÃO DO SISTEMA HD RADIO NA FAIXA FM	
I.2.2.	DIVERSIDADES NO TEMPO E NA FREQUÊNCIA	
I.2.3.	MECANISMO BLEND	
I.2.4.	LIMITES DE EMISSÕES ESPECTRAIS FM	
I.2.5. I.2.6.	CANAL DE CONTROLE DO SISTEMA	
I.2.7.	PARTIÇÕES DE FREQUÊNCIA E CONVENÇÕES ESPECTRAIS NOS MODOS DE TRANSMISSÃO	
I.2.7.	NÍVEIS DAS BANDAS LATERAIS DIGITAIS	
II. RI	ESULTADOS TABELADOS	56
II.1.	DETALHES DAS ROTAS UTILIZADAS NAS MEDIÇÕES HD RADIO	
II.2.	DETALHES DOS RESULTADOS DAS MEDIÇÕES HD RADIO	
	ROCEDIMENTO PARA OBTENÇÃO DA INTENSIDADE DE CA RICO DIGITAL	
LLEIF		
III.1.	METODOLOGIA PROPOSTA PELA IBIQUITY	
III.2.	MELHORIAS NA METODOLOGIA PROPOSTA PELA IBIQUITY	66
IV. Al	RQUIVO DE MEDIÇÃO DO SISTEMA HD RADIO	71

BIBLIOGRAFIA	12	2
--------------	----	---

ÍNDICE DE TABELAS

Tabela 1 – Características técnicas da emissora da Rádio Cultura FM e das transmissõe analógica e digital	
Tabela 2 – Modo de transmissão utilizado durante os testes	13
Tabela 3 – Características técnicas dos dispositivos e equipamentos de medição 1	15
Tabela 4 – Descrição dos parâmetros de medição do software HD Radio	16
Tabela 5 – Parâmetros de Avaliação	18
Tabela 6 – Descrição das rotas	19
Tabela 7 – Resultados da recepção estática nas rotas radiais e circulares	24
Tabela 8 - Pontos onde Rx_Mode=0 ou 1	24
Tabela 9 – Resultados da recepção móvel nas rotas radiais da Rádio Cultura FM	29
Tabela 10-Resultados da recepção móvel nas rotas circulares da Rádio Cultura FM 3	30
Tabela 11 – Medições fixas com receptores comerciais	31
Tabela 12 – Escala de avaliação da qualidade de áudio da Recomendação UIT-R BS 1284 3	33
Tabela 13 – Classificação das notas subjetivas do áudio adotadas neste trabalho	33
Tabela 14 – Resultados do áudio analógico em recepção estática	36
Tabela 15 – Resultados comparativos entre os áudios analógico e digital na recepção estática. 3	37
Tabela 16 – Resumo dos resultados comparativos entre os áudios analógico e digital recepção estática	
Tabela I.1- Limites de emissão do modo Híbrido HD Radio FM (*)	15
Tabela I.2 - Limites de emissão do Modo Todo Digital HD Radio FM	15
Tabela I.3-Taxa de informação aproximada dos canais lógicos primários	1 7
Tabela I.4 - Taxa de informação aproximada dos canais lógicos secundários	1 7
Tabela I.5-Resumo da forma de onda Híbrida, modo de serviço MP1	50
Tabela I.6-Resumo da forma de onda Híbrida Estendida, modos de serviço MP2, MP3, MP1 MP5 e MP6	-
Tabela I.7-Escalonamento de subportadoras OFDM	53
Tabela II.1-Detalhes da localização dos pontos de medições HD Radio	56

Tabela II.2-Detalhes dos trechos para medições móveis	57
Tabela II. 3-Resultados do HD Radio para recepção em pontos fixos	58
Tabela II.4-Resultados do áudio FM para recepção em pontos fixos	59
Tabela III.1-Exemplo da metodologia proposta pela iBiquity	62

ÍNDICE DE FIGURAS

Figura 1 – Localização do centro de transmissão da Rádio Cultura FM	9
Figura 2 – Diagrama de bloco do sistema de transmissão	10
Figura 3 – Visão do transmissor analógico	11
Figura 4 – Visão do transmissor digital	12
Figura 5 – Foto das antenas usadas nos testes; destaque para antena da transmissão digital	12
Figura 6 – Visão global do centro de transmissão da Cultura FM	12
Figura 7 – (a) Laboratório móvel de telecomunicações do Inmetro e detalhe da antena equipamentos de medição	
Figura 8 – Diagrama dos equipamentos de medição	14
Figura 9 – Antena de recepção modelo Kathrein	14
Figura 10 – Tela do programa do receptor HD Radio	15
Figura 11 – Espectro registrado no ponto R1PREF	16
Figura 12 – Receptores analógicos comerciais NKS (esq) e TOSHIBA (dir)	17
Figura 13 – Receptores digitais comerciais SONY (esq) e JVC (dir)	17
Figura 14 – Receptor digital profissional HD Radio	17
Figura 15 – Rotas radiais utilizadas nos testes com a Rádio Cultura FM	20
Figura 16 – Rotas radiais (em azul) acrescidas das rotas circulares (em vermelho) utilizadas testes com a Rádio Cultura FM	
Figura 17 – Previsão teórica vs medições de intensidade de campo elétrico analógico	22
Figura 18 – Resultados da recepção em pontos fixos ilustrados no mapa	23
Figura 19- Detalhe dos resultados da recepção em pontos fixos ilustrados no mapa	23
Figura 20-Perfil do terreno entre o centro de transmissão e o ponto R1P3	25
Figura 21-Intensidade de campo digital em função da distância do transmissor	25
Figura 22- Perfil do terreno entre o centro de transmissão e C5P3	26
Figura 23-Intensidade de campo digital versus SNR	27
Figura 24 – Parâmetro Rx_Mode registrado nas medições em mobilidade	28
Figura 25 – Detalhe do registro do Rx_Mode na área urbana de São Paulo	30

Figura 26 – Recepção do áudio com receptor comercial SONY em medições fixas	32
Figura 27 – Recepção do áudio com receptor comercial JVC em medições fixas	32
Figura 28 – Avaliação subjetiva do áudio analógico FM da Rádio Cultura FM	34
Figura 29 – (a) Recepção estática do áudio analógico no mapa; (b) detalhe do raio de 19 km	35
Figura 30 – Gráfico de notas da avaliação dos áudios analógico e digital	37
Figura 31 – Registro do espectro com sinal digital desligado (esq) e ligado (dir)	39
Figura I.1-Limites de emissão do Modo Híbrido e Híbrido Estendido HD Radio FM	44
Figura I.2 - Limites de emissão do Modo Todo Digital HD Radio FM	45
Figura I.3-Partição de frequência – Ordenação A	48
Figura I.4-Partição de frequência – Ordenação B	48
Figura I.5 - Mapeamento espectral de subportadoras de referência da banda lateral inferior	49
Figura I.6 - Mapeamento espectral de subportadoras de referência da banda lateral superior	49
Figura I.7-Inserção do sinal digital junto ao sinal FM, Modo Híbrido, modo de serviço MP1	49
Figura I.8-Inserção do sinal digital junto ao sinal FM, modo híbrido estendido	51
Figura I.9 - Espectro do Modo Digital Total, modos de serviço MP5 e MP6, MS1 até MS4	52
Figura I.10 - Modo Híbrido Estendido.	55
Figura III.1-Raio para determinação da relação de potência entre os sinais analógico e digita	1.60
Figura III.2-Ponto 1: distância ao transmissor de 1060 m	62
Figura III.3-Ponto 2: distância ao transmissor de 1100 m	63
Figura III.4-Ponto 3: distância ao transmissor de 996 m	64
Figura III.5-Ponto 4: distância ao transmissor de 1134 m	65
Figura III.6-Ponto 5: distância ao transmissor de 1150 m	66

Apresentação

O Ministério das Comunicações publicou no Diário Oficial da União o Aviso de Chamamento Público nº 1/2009, em 22 de maio de 2009, com o objetivo de efetuar testes e avaliações com sistemas de radiodifusão sonora digital, visando à futura decisão para a escolha do Padrão de Rádio Digital a ser adotado no País.

A Portaria Nº 290 de 30 de março de 2010, promulgada pelo Ministério das Comunicações, criou o Sistema Brasileiro de Rádio Digital – SBRD, autorizando as emissoras AM e FM a realizarem testes para avaliar o desempenho dos sistemas de radiodifusão digitais e a compatibilidade com os sistemas analógicos existentes.

Posteriormente, em junho de 2011, foi publicado um novo Chamamento Público, Ato de Chamamento Público n.º 01/2011, de 13 de junho de 2011, ampliando assim o prazo para a realização de testes com Rádio Digital.

A empresa iBiquity Digital Corporation, a partir do Chamamento Público, apresentou o sistema de Rádio Digital HD Radio para testes no Brasil. Os testes foram realizados por meio do esforço conjunto e da cooperação entre diversas entidades como o Inmetro (Instituto Nacional de Metrologia, Qualidade e Tecnologia) e o INCT-CSF (Instituto Nacional de Ciência e Tecnologia de Comunicações sem Fio), composto pela UFMG (Universidade Federal de Minas Gerais), UFPA (Universidade Federal do Pará), UFRN (Universidade Federal do Rio Grande do Norte) e CETUC (Centro de Estudos em Telecomunicações da PUC/Rio), criando uma equipe de trabalho composta por diversos profissionais, sob coordenação do Ministério das Comunicações, por meio da Secretaria de Serviços de Comunicação Eletrônica, e com o apoio da Anatel (Agência Nacional de Telecomunicações).

O presente trabalho relata os testes do sistema HD Radio com a emissora de radiodifusão sonora em FM da Fundação Padre Anchieta - Centro Paulista de Rádio e TV Educativas em São Paulo. A transmissão híbrida da Rádio Cultura FM foi realizada no período de 19 de junho a 27 de junho de 2012, no qual foram realizados testes diurnos.

Para a realização dos testes foram instalados um transmissor HD Radio e uma antena na estação da Rádio Cultura FM em São Paulo, que foram utilizados durante a campanha de medidas para a transmissão do sinal digital, constituindo assim um sinal híbrido no ar com o sinal FM analógico, ambos transmitindo a mesma programação.

A realização desses testes foi autorizada pela Anatel por meio do Ato Nº 3.287, de 13 de junho de 2012, sob a classificação de Serviço Especial para Fins Científicos ou Experimentais.

Este documento tem como objetivo oferecer a fundamentação técnica de futuros trabalhos para apoio à elaboração de Normas e Regulamentos dos Serviços de Radiodifusão.

Coordenação dos trabalhos

Coordenação-Geral de Avaliação de Outorgas (CGOU) do Departamento de Acompanhamento e Avaliação (DEAA) da Secretaria de Serviços de Comunicação Eletrônica (SCE) do Ministério das Comunicações (MC)

Entidades executantes

Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) Instituto Nacional de Ciência e Tecnologia (CSF)

Equipe de engenheiros e técnicos do Ministério das Comunicações que participaram dos testes

Engenheiros e técnicos do Departamento de Acompanhamento e Avaliação (DEAA) Engenheiros da Coordenação-Geral de Radiodifusão Comunitária (CGRC) do Departamento de Outorga de Serviços de Comunicação Eletrônica (DEOC), da Secretaria de Serviços de Comunicação Eletrônica (SCE)

Engenheiros da Delegacia Regional do Ministério das Comunicações em São Paulo (DRMC-SP)

Equipe de engenheiros e técnicos do Inmetro que participaram dos testes

Augusto Pereira da Soledade Jaci Rodrigues Nascimento Junior Winicius Rosa Evangelista João Pires

Equipe de engenheiros e técnicos da Rádio Cultura FM

Eng. Sebastiao Eduardo D. Alves

Eng. Jose Carlos Moreno

Eng. Bernardo

Adm. Cassio Jorge

Eng. Francisco Sérgio Husni Ribeiro

Eng. Edson Geraldo Benedito

Eng. Marcos Krisp de Lucena

Locais dos testes

São Paulo, SP

Emissora envolvida

Rádio Cultura FM - SP

Instituições de Ensino e Pesquisa envolvidas

Universidade de Brasília - UnB

Universidade Federal de Minas Gerais – UFMG

Universidade Federal do Rio Grande do Norte – UFRN

Universidade Federal do Pará – UFPA

Centro de Estudos em Telecomunicações da PUC / Rio

Entidades internacionais parceiras

iBiquity Digital Corporation

Responsáveis pela Análise dos Dados

Flávio Ferreira Lima, PhD (Ministério das Comunicações): Doutor em Radiodifusão Digital, Propagação, Eletromagnetismo, Processamento de Sinais e Sistemas de Telecomunicações.

Cássio Gonçalves do Rego, PhD (UFMG): Doutor em Eletromagnetismo Aplicado.

Ronaldo de Andrade Martins, PhD (UFRN): Doutor em Propagação, Eletromagnetismo e Comunicações Móveis.

Luiz A. R. da Silva Mello, PhD (CETUC/PUC-Rio): Doutor em Sistemas de Telecomunicações

Rodolfo Saboia Lima de Souza, PhD (Inmetro): Doutor em Sistemas de Comunicações

Cláudio Garcia Batista, MSc (UFMG): Mestre em Sistemas de Telecomunicações, doutorando em Sistemas de Telecomunicações

Marta Pudwell Chaves de Almeida, PhD (Inmetro): Doutora em Eletromagnetismo Aplicado.

Rodrigo Pereira David, MSc (Inmetro): Mestre em Sistemas de Telecomunicações, doutorando em Sistemas de Comunicações

Pedro Vladimir Gonzalez Castellanos, PhD (Inmetro): Doutor em Eletromagnetismo Aplicado.

João Alfredo Cal Braz, MSc (Inmetro): Mestre em Sistemas de Telecomunicações, doutorando em Sistemas de Comunicações

Sumário Executivo

Neste documento são apresentados os resultados dos testes feitos com a emissora Rádio Cultura FM LTDA, em São Paulo/SP, no período diurno, com a tecnologia HD Radio na faixa de frequência em VHF na banda II (banda FM). O objetivo dos testes era avaliar a área de cobertura do sinal digital comparada à cobertura do sinal analógico, bem como a robustez do sistema em diversos ambientes, de forma a verificar o funcionamento do mesmo diante da realidade brasileira.

Os testes foram conduzidos pelo Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) com a colaboração da emissora Rádio Cultura FM e da empresa *iBiquity Digital Corporation* com o apoio da Agência Nacional de Telecomunicações (Anatel), e a supervisão do Ministério das Comunicações (MC).

O sistema de transmissão estava localizado no centro urbano da cidade de São Paulo. O sinal digital HD Radio foi transmitido no modo híbrido estendido combinado com o sinal analógico no ar, com separação de 163,8 kHz entre a portadora do sinal analógico FM e as portadoras do sinal digital HD Radio nas sub-bandas laterais inferior e superior. A potência utilizada no transmissor para o sinal analógico foi de 27 kW e, para o sinal digital, de 1 kW. Acoplando os sistemas FM e HD Radio nas suas respectivas antenas de transmissão, a Potência Isotrópica Efetivamente Irradiada (EIRP) do sinal analógico foi de 112,3 kW e a do sinal digital, de 1,12 kW. Assim, a relação de proteção (relação de potência EIRP entre os sinais analógico e digital) foi de 20 dB. Durante a campanha de medição, dois receptores FM comerciais foram utilizados na análise da recepção analógica, tanto para verificar eventuais impactos na sua recepção devido à introdução do sinal digital, como para auxiliar na verificação da área de cobertura do sinal analógico.

Durante os testes foram realizadas medições nas situações de recepção estática e recepção móvel. As medições percorreram dois tipos de rotas, a saber: rotas radiais, nas quais a viatura afastava-se do ponto de transmissão, e rotas circulares, nas quais a viatura deslocava-se em um mesmo ambiente (urbano, industrial, rural, etc.), evitando se afastar do transmissor. As rotas radiais foram planejadas para avaliar a área de cobertura dos sinais analógico e digital, enquanto que as rotas circulares foram utilizadas para avaliar a recepção em diferentes ambientes.

As rotas radiais foram escolhidas em função da orientação azimutal e atingem cerca de 60 km de distância da emissora da Rádio Cultura FM. As rotas circulares foram definidas em ambientes urbano e residencial

As medições de intensidade de campo elétrico do sistema analógico são comparadas com valores teóricos para fins de validação. Esse parâmetro teve o comportamento previsto pelo modelo teórico no que tange ao decaimento com a distância. De uma forma geral os valores medidos estiveram inferiores aos valores previstos, em virtude do modelo utilizar o perfil do terreno sem incluir a ocupação urbana e a vegetação, as quais contribuem para a atenuação da intensidade de campo.

O sistema HD Radio utiliza o mecanismo denominado *blend* que faz a comutação automática entre os sinais digital e analógico quando há falha na recepção do sinal digital. Considerando que o processamento digital insere um atraso no sinal transmitido, o áudio digital naturalmente fica defasado em relação ao analógico, com atraso correspondente ao tempo de processamento.

Sendo assim, na transição do sinal digital para o analógico, e vice-versa, essa diferença é notada pelo ouvinte, podendo ser amenizada atrasando-se o sinal analógico em relação ao digital no transmissor.

Durante as medições em mobilidade, o áudio gravado com o receptor profissional permitiu observar o funcionamento do mecanismo *blend*. Como no centro de transmissão não houve nenhum processo de atraso do áudio analógico em relação ao digital, ficou claro durante a campanha de medição que os áudios na recepção têm uma diferença de aproximadamente 8 segundos, com o áudio analógico sempre adiantado em relação ao digital.

Para o ouvinte, quando o *blend* se inicia, a percepção é de que houve perda de parte da informação. No retorno do sinal digital (final do *blend*), o ouvinte percebe a repetição de um trecho de 8 segundos do áudio escutado anteriormente no formato analógico. Portanto, é necessário o tratamento adequado do tempo de atraso do áudio digital em relação ao analógico no centro de transmissão para que o efeito do *blend* não acarrete desconforto para o ouvinte.

Na medição estática faz-se o registro da recepção digital em cada local de medição. Com a utilização do receptor profissional, foram realizadas 35 medições em toda região, havendo decodificação do sinal digital em 21 pontos (60%), decodificação do sinal digital com alternância para áudio analógico em 3 pontos (9%), e não decodificação do sinal digital em 11 pontos (31%). Dentro do raio de 19 km a partir do transmissor houve 21 medições, e em cada caso os respectivos percentuais foram 17 (81%), 2 (9,5%) e 2 (9,5%). Dos três pontos com alternância entre recepção digital e analógica, dois pontos estavam dentro do raio de 19 km. Nesses três pontos foi observado que a variação do sinal digital ocorreu durante a passagem de veículos, em situações de tráfego intenso.

Analisando as medições estáticas das rotas radiais, o ponto mais próximo da emissora onde não ocorreu decodificação de sinal digital estava localizado a 21,3 km (R1P3), na direção sudeste. Este ponto estava mais próximo da emissora do que um dos pontos onde se observou alternância de recepção digital e analógica (também localizado sobre R1). Embora o perfil do terreno entre a emissora e o ponto R1P3 não seja tão acidentado a ponto de causar atenuação no sinal, o ambiente de recepção nesse ponto, situado em rodovia com intenso tráfego de veículos e com morros e vegetação no entorno, pode ter contribuído para a não decodificação do sinal digital. Isso pôde ser inferido porque o valor de intensidade de campo elétrico nesse ponto foi similar ao valor de campo nos pontos com alternância de recepção digital e analógica, com valor de SNR mediano inferior ao SNR daqueles pontos, estando também abaixo do limiar de SNR aceitável para decodificação do sinal digital.

O limiar de intensidade de campo elétrico digital para recepção digital em medições estáticas com receptor profissional ficou compreendido na faixa de 43 a 50 dBµV/m. Cabe salientar que esse limiar apenas é válido quando o limiar de relação sinal-ruído (SNR) para a decodificação do sinal HD Radio é respeitado. No teste em questão, foi possível verificar que valores maiores que 7,7 dB para a SNR foram suficientes para decodificação do sinal digital. No intervalo de SNR entre 2,0 dB e 7,7 dB, houve recepção digital perfeita em um ponto de medição e instável em outros dois. Devido à existência de poucos valores nesse intervalo, não foi possível definir um valor ou intervalo aceitável para o limiar de SNR no ambiente testado.

Analisando as medições estáticas das rotas circulares, na rota C6 (urbana) em Osasco, situada a distância máxima de 12,4 km da emissora, na direção oeste, houve decodificação do áudio

digital em todos seus pontos. A rota C5 (urbana), situada na distância máxima de 18,9 km da emissora, na direção sudoeste, teve dois pontos onde não ocorreu decodificação do áudio digital. Os valores medianos da intensidade de campo medidos nesses pontos ficaram altos, acima do limiar para uma boa recepção do sinal digital com o sistema HD Radio, porém não houve decodificação do sinal digital porque o limiar necessário de relação sinal-ruído (SNR) do sistema HD Radio para recepção não foi atingido, uma vez que os valores de SNR ficaram abaixo do limiar aceitável. O perfil do terreno entre o local de transmissão e estes pontos é acidentado com ondulações típicas de subida na direção da região serrana, o que dificulta a visada direta. O ruído alto em cada local de medição e o perfil acidentado entre a emissora e o local de medição podem ter influenciado na degradação do sinal digital nesses pontos. Na rota C1 (residencial), situada na distância máxima de 23,3 km da emissora, na direção leste, houve dois pontos onde não ocorreu decodificação do áudio digital. Um dos pontos estava situado em avenida com tráfego moderado e o outro estava situado ao lado do metrô Corinthians-Itaquera. Os valores de intensidade de campo elétrico medidos nesses locais estariam dentro do limiar aceitável para uma boa recepção do sinal digital com o sistema HD Radio, caso o limiar necessário de relação sinal-ruído (SNR) do sistema HD Radio para recepção tivesse sido atingido, o que não ocorreu. Embora o perfil do terreno entre o local da antena de transmissão e esses dois pontos não tenha ondulações grandes a ponto de impedir a visada direta, a ocupação urbana no entorno do local de medição pode ter contribuído para a atenuação do sinal digital.

Na avaliação do áudio digital com receptores comerciais em medições estáticas foram usados um receptor de mesa da marca SONY e um receptor automotivo JVC, ambos com o mecanismo *blend*. Utilizando-se o critério de ocorrência ou não de *blends* no áudio gravado durante medições estáticas, obteve-se dentro do raio de 19 km a recepção puramente digital em 81% dos locais com o receptor JVC e em 71% com o receptor SONY. Em relação ao limiar de intensidade de campo elétrico para recepção digital com os receptores SONY e JVC, os valores variaram de 50 a 55 dB μ V/m para o primeiro e de 45 a 50 dB μ V/m para o segundo, respeitando-se o limiar necessário de SNR do sistema HD Radio para recepção.

A qualidade da recepção do áudio analógico foi avaliada por meio de medições estáticas realizadas com dois receptores comerciais, um da marca NKS e outro da marca TOSHIBA, utilizando-se a classificação de qualidade de recepção como "Recepção Boa" (áudio com presença de ruído, desde imperceptível a leve), "Recepção Pobre" (presença de ruído ao ponto da informação tornar-se ininteligível) e "Recepção Ruim" (somente ruído). Dentro do raio de 19 km em relação ao transmissor, obtiveram-se 15 pontos (71,4%) com "Recepção Boa" e 5 pontos (23,8%) com "Recepção Pobre" e apenas 1 (4,8%) com "Recepção Ruim". Considerando toda a região de testes, para o total de 35 pontos medidos, o resultado foi o seguinte: "Recepção Boa" (19 pontos), "Recepção Pobre" (6 pontos) e "Recepção Ruim" (10 pontos). O limiar de intensidade de campo elétrico do sistema analógico obtido para uma boa recepção de áudio foi de aproximadamente 60 dB μ V/m. Este valor está próximo do valor de 54 dB μ V/m definido no regulamento técnico brasileiro para áreas rurais e do valor de 66 dB μ V/m para áreas urbanas.

Comparando as recepções dos sinais analógico e digital, verificou-se por meio dos testes que, dentro do raio de 19 km, o áudio digital atendeu a mais pontos do que o áudio analógico com qualidade de recepção boa, caracterizando bom desempenho do sistema digital nessa região. Após 19 km e até a distância aproximada de 50 km, houve atendimento similar dos dois sistemas, quando comparada a recepção digital à recepção analógica com qualidade boa, de onde se conclui que a cobertura do HD Radio é similar à cobertura do FM nessa área.

A análise do impacto da presença do sinal digital HD Radio sobre o áudio analógico foi realizada com base na avaliação subjetiva dos áudios analógicos. Esses áudios foram obtidos em medições estáticas por meio de receptores comerciais. Os áudios analógicos registrados nas situações com o transmissor digital ligado e desligado foram avaliados. Os valores mostraram que a presença do sinal digital não causou impacto na qualidade do áudio analógico FM.

As medições em mobilidade com o receptor profissional foram realizadas para verificar a decodificação do sinal digital, as ocorrências de *blends* e a estimativa da área de cobertura digital em cada uma das rotas, as quais são divididas em trechos entre pontos fixos.

Verificando os resultados em cada rota, na rota radial R1 (direção sudeste), no trecho P1 a P2, que se estende a 10,88 km de distância em relação ao transmissor, houve decodificação do áudio digital em 71,6% dos quadros de áudio recebidos, sendo que nos demais trechos da rota houve pouca cobertura digital.

Na rota radial R2 (direção sudoeste) houve decodificação do áudio digital em todo o trecho P1 a P2, que se estende até 10,7 km de distância em relação ao transmissor. No trecho seguinte (P2 a P3), o primeiro *blend* ocorreu a 17 km da emissora. Seguindo no trecho P3 a P4, de 26,4 a 44,9 km, houve decodificação de somente 21,8% dos quadros de áudio digital recebidos dentro desse trecho. No último trecho (P4 a P5), a partir de 44,9 km, praticamente não houve cobertura digital.

Na rota R4 (direção noroeste), houve decodificação do áudio digital em todo o trecho P1 a P2, que se estende até 11,8 km de distância em relação ao transmissor. No trecho seguinte (P2 a P3), de 11,8 a 24,9 km, houve decodificação de 62,5% dos quadros de áudio digital recebidos dentro desse trecho. Seguindo no trecho de 24,9 a 47,5 km, (P3 a P4) o percentual foi de 24,3%. No último trecho, de 47,5 a 61,7 km (P4 a P5), não houve cobertura digital.

Na rota R6 (direção nordeste), no trecho até 9,8 km, (P1 a P2) houve decodificação de 74,7% dos quadros de áudio. No trecho P2 a P3, desde 9,8 km até 29,8 km da emissora, houve decodificação de áudio em 100% dos quadros recebidos. Seguindo no trecho de 29,8 a 45,3 km (P3 a P4), o percentual foi de 87,2 %, e, no último trecho, de 45,3 a 60,9 km (P4 a P5), o percentual foi de 47,9%.

Então, com relação às duas rotas na área oeste da emissora, os resultados mostraram que houve cobertura digital até a distância de 17 km da emissora na rota radial R2 e até 11,8 km da emissora na rota radial R4. Na área leste, na rota R6, houve cobertura digital com ocorrência de *blends* até a distância de 9,8 km da emissora, mas no percurso entre as distâncias de 9,8 km a 29,8 km houve cobertura digital em todo o trecho. Na rota R1 houve cobertura digital com ocorrência de *blends* até 10,9 km da emissora.

Em relação aos resultados em mobilidade sobre as rotas circulares, situadas em diferentes ambientes localizados a uma distância máxima de 23,3 km da emissora, os resultados da rota C6 (ambiente urbano na região de Osasco), situada na distância máxima de 12,4 km da emissora na direção oeste, estando mais próxima do que as rotas C1 e C5, de forma geral foram melhores que os das outras rotas circulares C1 e C5. Em um dos trechos de C6 (P3 a P4) houve cobertura

digital durante todo o tempo de medição, aproximadamente 15 minutos, e nos outros trechos houve cobertura digital com ocorrência de poucos *blends*.

A rota circular C1 estava situada em ambiente residencial, na direção leste da emissora, passando pelos bairros da Penha, Vila Marieta, Itaquera e Vila Matilde. O primeiro trecho (P1 a P2) seguiu pela Avenida Governador Carvalho Pinto, até a distância aproximada de 19 km da emissora, e apresentou o melhor percentual de quadros de áudio digital decodificados (67,3%) dentre os trechos dessa rota C1, nos quais ocorreram vários *blends*. Considerando que a altitude do local da emissora e a altitude da região onde a rota C1 está localizada não possuem diferenças significativas, a não decodificação do sinal digital nos seus vários trechos pode ter sido influenciada pela ocupação urbana.

A rota circular C5 estava em ambiente urbano, próximo da Estrada de Itapecerica, na direção sudoeste a uma distância máxima de 18,9 km da emissora. Conforme discutido nos resultados das medições estáticas, o perfil do terreno entre a emissora e a região desta rota é acidentado com ondulações típicas de subida na direção da região serrana, que constituem obstrução para o sinal. O trecho entre P1 e P2 apresentou o melhor percentual de quadros de áudio digital decodificados (74,1%) dentre os trechos dessa rota C5, nos quais ocorreram vários *blends*.

Os resultados da recepção do áudio digital em mobilidade nas áreas urbanas de São Paulo citadas no texto foram considerados bons.

Concluindo, os resultados dos testes com o sistema HD Radio em São Paulo em transmissão híbrida mostraram que o sinal digital, de uma forma geral, tem área de cobertura similar à do sistema analógico, possuindo um desempenho melhor que o sistema FM no raio de 19 km a partir do transmissor, estando 20 dB abaixo do FM (aproximadamente 1% da potência EIRP do sinal analógico).

Rio de Janeiro, 22 de outubro de 2012

Rodolfo Saboia Lima de Souza

Chefe de Divisão de Metrologia em Telecomunicações Dimci – Ditel Inmetro

1. Introdução

Este documento apresenta o resultado dos testes realizados em São Paulo / SP com o objetivo de avaliar o desempenho do sistema HD Radio de radiodifusão sonora digital [1] [2] para aplicação nas faixas de frequências de radiodifusão em frequência modulada.

Os testes foram realizados em conjunto com a emissora de radiodifusão sonora em frequência modulada em VHF banda II (usualmente conhecida como banda de FM), Rádio Cultura FM.

A estrutura do documento é definida da maneira detalhada a seguir. O Capítulo 2 descreve o sistema de transmissão instalado na emissora da Cultura FM para irradiar os sinais digital e analógico durante os testes. O Capítulo 3 descreve a unidade móvel, os equipamentos e a metodologia de medições utilizados para caracterizar o sinal recebido. O Capítulo 4 relata os resultados dos testes, apresentando a comparação entre a intensidade de campo prevista e a obtida nas medições, a avaliação da cobertura de sinal digital com receptor profissional e com receptores comerciais, os resultados da recepção analógica FM, a comparação entre resultados da recepção dos áudios analógico e digital e o impacto do sinal digital HD Radio sobre o áudio analógico. No Apêndice é apresentado o histórico e uma visão geral das características técnicas do sistema HD Radio, os detalhes das medições e os seus respectivos resultados, a descrição do procedimento para obtenção da intensidade do campo elétrico digital e um exemplo do arquivo de medições do receptor profissional HD Radio.

2. Sistema de Transmissão

2.1. Características Técnicas do Sistema de Transmissão

O sistema de transmissão da Rádio Cultura FM está localizado no centro urbano da cidade de São Paulo. A Figura 1 ilustra a localização do centro de transmissão.

Figura 1 – Localização do centro de transmissão da Rádio Cultura FM

Os testes foram realizados no modo combinado, que junta os sinais digital e analógico no ar. Isso significa que os sistemas de transmissão dos sinais HD Radio e FM são separados e utilizam diferentes antenas. O diagrama de bloco do sistema de transmissão é mostrado na Figura 2 e os principais componentes do sistema de transmissão são descritos na Tabela 1.

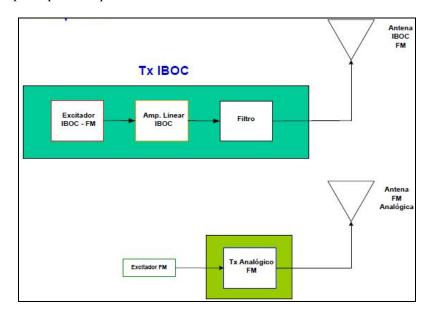


Figura 2 – Diagrama de bloco do sistema de transmissão

ESPECIFICAÇÕES TÉCNICAS DE OPERAÇÃO DA EMISSORA			
ANALÓGICO	DIGITAL		
FREQUÊNCIA: 103,3 MHz CLASSE: E3 CANAL: 277E	FREQUÊNCIA: 103,3 MHz		
LOCALIZAÇÃO DA EST	TAÇÃO TRANSMISSORA		
CIDADE / ESTADO: São Paulo / SP COORDENADAS GEOGRÁFICAS: 23° 32' 56" S,	46° 40' 49'' W		
TRANS	MISSOR		
FABRICANTE: Harris Corporation MODELO: HT 35 FM POTÊNCIA NOMINAL: 35 kW POTÊNCIA UTILIZADA DURANTE OS TESTES: 27 kW	FABRICANTE: Harris Broadcasting Communications MODELO: FAX10K POTÊNCIA NOMINAL DIGITAL: 0,3 kW a 3,4 kW POTÊNCIA UTILIZADA DURANTE OS TESTES: 1 kW		
ANTENA			
FABRICANTE: Harris Corporation MODELO: FMXH – 6BC (6 elementos) POLARIZAÇÃO: Circular DIAGRAMA DE IRRADIAÇÃO: omnidirectional GANHO: 5,188 dBd ALTURA DA ANTENA EM RELAÇÃO AO NIVEL DO SOLO: 111,25 m POTÊNCIA MÁXIMA: 100 kW AZIMUTE: 117° NV	FABRICANTE: Mectrônica Mecânica e Eletrônica Ltda MODELO: MT FM A-02 (2 elementos) POLARIZAÇÃO: Circular DIAGRAMA DE IRRADIAÇÃO: omnidirecional GANHO: -0,06 dBd ALTURA DA ANTENA EM RELAÇÃO AO NÍVEL DO SOLO: 99,40 m POTÊNCIA MÁXIMA: 40 kW AZIMUTE: 117° NV		
LINHA DE TRANSMISSÃO			
FABRICANTE: Andrew Antenas - Heliax MODELO: HJ9-50 COMPRIMENTO: 125,0 m IMPEDÂNCIA CARACTERÍSTICA: 50 Ohms	FABRICANTE: Andrew Antenas - Heliax MODELO: LDF5-50 7/8" COMPRIMENTO: 120,0 m IMPEDÂNCIA CARACTERÍSTICA: 50 Ohms		

ATENUAÇÃO DA LINHA: 0,27 dB/100m AT. DOS ACESSÓRIOS (CONECTORES E FILTROS, ETC): 0,8 dB	ATENUAÇÃO DA LINHA: 1,2 dB/100 m AT. DOS CONECTORES: 0,2 dB			
POTÊNCIA IRRADIADA				
EIRP: 112,3728 kW	EIRP: 1,12 kW			
ERP: 68,52 kW	ERP: 0,683 kW			
RELAÇÃO ENTRE OS SINAIS DIGITAL E ANALÓGICO				
RELAÇÃO DE PROTEÇÃO NO AR (FM ERP / HD Radio ERP): 20 dB				

Tabela 1 – Características técnicas da emissora da Rádio Cultura FM e das transmissões analógica e digital

O sinal HD Radio ocupa as bandas laterais superior e inferior em relação ao sinal analógico. A frequência central das sub-bandas possui espaçamento de canal de ±163,89 kHz da frequência central FM, sendo que cada sub-banda ocupa uma largura de canal adjacente de 69,041 kHz.

Nos testes da Rádio Cultura FM foi utilizado o modo híbrido estendido, que se diferencia do modo híbrido porque insere na largura de faixa entre o sinal analógico e as bandas do modo híbrido uma subbanda para aumento da capacidade digital. Dependendo do modo de serviço, uma, duas ou quatro partições de frequência podem ser adicionadas no limite das bandas laterais primárias principais, próximas ao sinal analógico. No item I do Apêndice é apresentado o detalhamento dessa configuração.

É importante ressaltar que nos testes da Cultura FM foi utilizado o modo MP3, porém não foi implementado o serviço SPS (*Supplemental Program Service*). Isso significa que todos os dados do áudio no canal MPS foram transmitidos nas portadoras P1 (+/- 129 a 199 kHz). As portadoras P3 (+/- 114 a 129 kHz) foram transmitidas vazias, não contendo dados.

Se a transmissão do sinal digital estivesse utilizando a antena do sistema analógico, a relação de proteção analógico/digital deveria ser no mínimo de 20 dB. Foram utilizadas antenas separadas, e a critério do sistema proposto em avaliação, foi adotada uma relação de proteção no ar, EIRP, de 20 dB, conforme consta na Tabela 1.

O transmissor utilizado para o teste do sinal digital é fabricado pela *Harris Broadcasting Communications*. Nesse equipamento os áudios são codificados e os parâmetros de transmissão são programados. O equipamento é mostrado na Figura 4.

Figura 3 – Visão do transmissor analógico

Figura 4 – Visão do transmissor digital

Para a transmissão do sinal HD Radio foi instalada uma antena no mesmo mastro da antena FM a cerca de 12 metros abaixo dessa, ambas apontando na mesma direção. A Figura 5 apresenta um fotografia na qual está indicada com duas setas pretas a antena de dois elementos utilizada para o teste do HD Radio (antena de dois elementos), abaixo da antena do sistema analógico (seis elementos). A Figura 6 apresenta a torre da estação onde está a Rádio Cultura FM.

Figura 5 – Foto das antenas usadas nos testes; destaque para antena da transmissão digital

Figura 6 – Visão global do centro de transmissão da Cultura FM

2.2. Parâmetros de transmissão

O sistema HD Radio oferece três configurações para transmissão do sinal digital [19] [20], apresentadas no item I do Apêndice desta Nota Técnica. Os testes descritos neste documento foram realizados com o modo Híbrido Estendido, com a configuração apresentada na Tabela 2.

Ocupação Espectral	Modo de Serviço	Canais Disponíveis	Modulação	Taxa de transmissão	Taxa de Codificação
Híbrido Estendido	MP3	MPS	64 QAM	P1 com 98 kbps P3 com 25 kbps	2/5

Tabela 2 – Modo de transmissão utilizado durante os testes

3. Equipamentos e Metodologia de Medição

3.1. Equipamentos de Medição

As medições do sistema IBOC foram realizadas com o laboratório móvel de telecomunicações do Inmetro, um veículo totalmente preparado e configurado para execução de trabalhos em campo, conforme Figura 7. A estrutura disponível para o laboratório móvel conta com o compartilhamento dos equipamentos e recursos do laboratório de comunicações sem fio do Inmetro, ampliando as possibilidades de configurações de medição do veículo. Esse laboratório possui facilidade de adaptação de novos equipamentos e conjuntos de antenas para realizar todos os tipos de experimentos em diferentes sistemas de comunicações e frequências.

(a)

(b)

Figura 7 – (a) Laboratório móvel de telecomunicações do Inmetro e detalhe da antena; (b) equipamentos de medição

A Figura 7 apresenta a disposição dos equipamentos de medição no interior do laboratório móvel. Os dois equipamentos principais de medição são o receptor profissional HD Radio e o analisador de espectro. O equipamento profissional para coleta dos dados nas medições consiste no software *HD Prospector Field Test System*, instalado no laptop, e no receptor profissional de áudio digital HD Radio.

Na Figura 8 o primeiro bloco apresenta todos os equipamentos utilizados nas medições em campo que coletam dados que são avaliados objetivamente, e o segundo bloco apresenta equipamentos preparados para gravação de áudio de receptores analógicos e digitais, que geram dados que são avaliados subjetivamente.

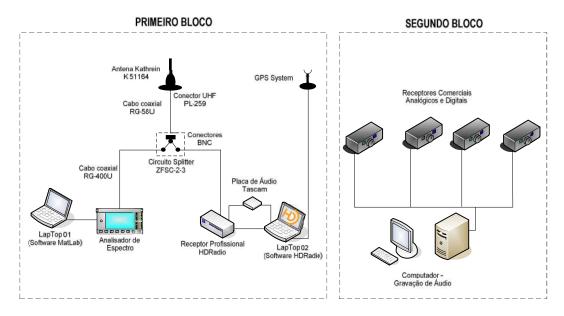


Figura 8 - Diagrama dos equipamentos de medição

No primeiro bloco, o analisador de espectro e o receptor HD Radio foram conectados à antena Kathrein (Figura 9), por meio de um divisor de potência, permitindo que o sistema realizasse simultaneamente ambas as medições de recepção de sinal (com o receptor HD Radio) e de intensidade do sinal (com o analisador de espectro). Cada um desses equipamentos tinha um laptop dedicado. Na Tabela 3 são apresentadas as características técnicas dos equipamentos utilizados.

Figura 9 – Antena de recepção modelo Kathrein

Dispositivo / Equipamento	Descrição		
Kathrein K51164 Magnet-Haftantenne ntena Tipo monopolo, 58-300 MHz, Ganho 0dB, comprimento 1380r Fator K=7,708 dBm-1(50 Ω) @95,7MHz			
Divisor	Mini Circuits Model ZFSC-2-4+ Perda 3,31 dB@1 MHz & 100 MHz		
Cabo da antena para divisor	Tipo RG58U Perda 0.01dB/m@ 1MHz Comprimento 4 m		
Cabo do divisor para analisador	Tipo RG-400U Perda 0.01dB/m@1MHz Comprimento 1 m		
Cabo do divisor para receptor HD Radio	Tipo RG-400U Perda 0.012dB/m@1MHz Comprimento 1.3 m		
Analisador de espectro	ANRITSU MS2724B (9 kHz-20GHz)		
GPS	Garmin GPS-18X		
Laptops	Laptop com Matlab para analisador de espectro Laptop para receptor HD Radio		
Desktop	Computador de mesa com software para gravação de áudio		
Acessórios	Cabos seriais		

Tabela 3 – Características técnicas dos dispositivos e equipamentos de medição

O receptor profissional HD Radio contempla diversos parâmetros oriundos da configuração do modo de operação, seja da transmissão ou da recepção do sinal. A Figura 10 ilustra a tela do software do receptor profissional, onde são apresentados os parâmetros de operação e seus valores instantâneos. Os principais parâmetros são descritos na Tabela 4.

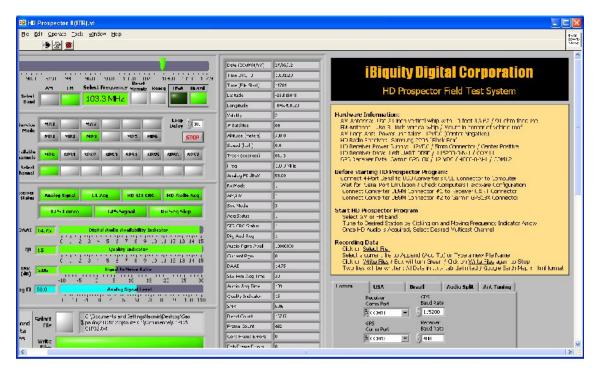


Figura 10 – Tela do programa do receptor HD Radio

Parâmetro	Descrição
Rx_Mode	Indica status de recepção: 0 = não decodifica áudio digital Para modo de serviço MPS (<i>Main Program Service</i>) indica que receptor fez <i>blend</i> para analógico e no modo SPS (<i>Supplemental Program Service</i>) o receptor fica mudo 1 = decodifica áudio digital em FM
Svc Mode	1 indica Modo Híbrido MP1. Apenas a partições de portadoras primárias (±129 a 199 kHz da portadora) são transmitidas. Vazão de dados (<i>Throughput</i>) de 98 kbps 2 indica Modo Híbrido MP2. Apenas a partições de portadoras primárias mais duas partições estendidas são transmitidas. Vazão de dados (<i>Throughput</i>) de 98 kbps + 12 kbps 3 indica Modo Híbrido MP3. Apenas a partições de portadoras primárias mais duas partições estendidas são transmitidas. Vazão de dados (<i>Throughput</i>) de 98 kbps + 24 kbps 5 e 6 indicam Modo Digital Total MP5 e MP6.
AM/FM	0 indica AM, 1 indica FM
Acq Status	0 ou 1 indica que o demodulador está registrando as portadoras de referência, apenas o modo de serviço é apresentado
SIS CRC Status	Indica recepção confiável do Station Information Service, que transmite dados de identificação da estação
Dig Aud Acq	0 ou 1 indica recepção de áudio digital. Similar ao Rx_Mode
Audio Pgms Avail	Indica os programas de áudio disponíveis e sua localização (<i>Main Program Service MPS e Supplemental Program Service SPS</i>). Por exemplo 1101000 indica MPS, SPS1 e SPS3.
Current Program	Indicação do programa de áudio selecionado: 0=MPS, 1=SPS1, 2=SPS2, etc
DAAI	Digital Audio Acquired Indicator é uma indicação relativa da qualidade de áudio digital que representa o nível de sinal através do "gráfico de barras". Geralmente segue o QI (quality indicator). Varia de 0 a 15.
QI	Quality Indicator é uma indicação relativa de qualidade de sinal digital. Valores de 11 a 15 indicam recepção digital em FM
SNR	Relação sinal-ruído calculada de cada portadora OFDM, utilizada para fornecer estado do canal para o decodificador de correção de erro
Blend count	Número total de <i>blends</i> para o sinal analógico desde o início da gravação de dados.
Analog FI	Nível de sinal analógico (dBµV)

Tabela 4 – Descrição dos parâmetros de medição do software HD Radio

Um GPS externo conectado a um laptop fornece as informações da localização, embora o software também apresente as coordenadas geográficas.

O analisador de espectro registra o espectro do sinal analógico e do sinal digital, conforme Figura 11. No processamento são obtidas as intensidades de campo elétrico do sinal analógico FM e do sinal digital, sendo esse calculado a partir da estimativa do valor total de potência das sub-bandas laterais, considerando o ACPR (*Adjacent Channel Power Ratio*) superior e inferior. O procedimento para obtenção da intensidade de campo elétrico digital encontra-se no item III do Apêndice.

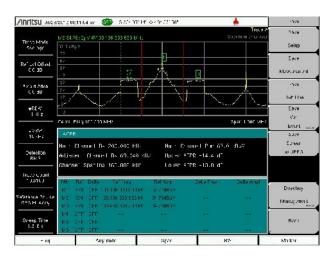


Figura 11 – Espectro registrado no ponto R1PREF

O segundo bloco de medição, apresentado na Figura 8, é destinado à gravação dos áudios analógico FM e digital HD Radio. O áudio analógico do sinal FM foi gravado a partir de receptores comerciais, modelos portáteis NKS AC122 FM/AM/OC 12 Faixas Digital Bivolt e TOSHIBA TR449SP Bivolt, Figura 12, para avaliação da recepção analógica. O áudio digital HD Radio foi gravado a partir dos receptores comerciais JVC KW-NT30HD e SONY XDR-S3HD (Figura 13) havendo também a gravação com o receptor digital profissional HD Radio, conforme Figura 14.

Figura 12 – Receptores analógicos comerciais NKS (esq) e TOSHIBA (dir)

Figura 13 – Receptores digitais comerciais SONY (esq) e JVC (dir)

Figura 14 – Receptor digital profissional HD Radio

3.2. Parâmetros de Medição

Os equipamentos e o sistema de medição fornecem uma ampla gama de parâmetros registrados durante os testes. A Tabela 5 mostra os parâmetros obtidos durante os testes, os quais serão utilizados na avaliação. Eles são divididos em três tipos: parâmetros que fornecem informações de radiofrequência (RF) e propagação do canal, parâmetros de banda básica e parâmetros auxiliares que ajudam na compreensão das causas e efeitos dos diferentes problemas de recepção.

Parâmetros	Tipos	Equipamentos	Intervalo de Medição
SNR	RF e canal de propagação		100 ms
Intensidade de campo elétrico analógico	RF e canal de propagação	Receptor profissional HD	100 ms
Rx_Mode	Banda Básica	Radio	100 ms
QI (Quality Indicator)	Banda Básica		100 ms
Intensidade de campos elétricos digital e analógico	RF e canal de propagação	Analisador de Espectro	Medição Estática e Dinâmica
Localização	Auxiliar		1 s
Tempo	Auxiliar	GPS	1 s
Velocidade	Auxiliar		1 s
Gravação do áudio FM	Banda Básica	Receptores analógicos comerciais FM	Medição Estática
Gravação do áudio HD Radio	Banda Básica	Receptor profissional e receptores digitais comerciais HD Radio	Medição Estática e Dinâmica
Eventos (Registros de ocorrências)	Auxiliar	Equipe	Cada evento e Caracterização do ambiente
Fotos	Auxiliar	Equipe	Medição Estática

Tabela 5 – Parâmetros de Avaliação

Dentre todos os parâmetros, os três mais importantes são: as intensidades dos campos elétricos digital e analógico obtidas com o analisador de espectro (a obtenção da intensidade do campo elétrico analógico é realizada por meio do analisador de espectro juntamente com o software *HD Prospector Field Test System*), o SNR e o parâmetro Rx_Mode (que define quando ocorre a decodificação do sinal digital).

Os espectros gravados permitem estudos sobre interferência e ruído, bem como cálculos de potência e intensidade de campo dos sinais.

O GPS fornece informações a respeito da posição e do tempo de cada amostra coletada. Assim, é possível plotar os dados em mapas, identificando os ambientes de recepção e possíveis localizações de fontes interferentes, como por exemplo, outras estações, bem como analisar as medidas em função da distância em relação ao transmissor.

Os áudios FM gravados são utilizados para avaliar subjetivamente a qualidade da recepção do sinal analógico.

Os eventos e as fotos coletados pela equipe em campo ajudam a encontrar as causas dos problemas na recepção e os efeitos que elas causam no sinal e na qualidade do áudio.

3.3. Metodologia de Medição

A campanha de testes foi realizada com a unidade móvel do Inmetro, realizando medições estáticas e móveis em dois tipos de rotas, radiais e circulares, conforme recomendado pela Anatel [26]. A primeira medição diária era realizada no ponto de referência para determinar se os parâmetros de transmissão estavam corretos mediante comparação com os dados coletados no dia da caracterização da van naquele ponto. Também era verificado se o equipamento de recepção estava com funcionamento adequado.

As atividades realizadas durante as medições nos pontos fixos são apresentadas a seguir.

I

- Captura do espectro do sinal *simulcast*.
- Captura dos dados do sinal digital HD Radio com o receptor profissional, por um período de 5 minutos.
- Gravação do áudio digital com receptor profissional, por um período de 5 minutos.
- Gravação do áudio digital com receptores comerciais, por um período de 2 minutos.
- Gravação do áudio analógico FM com receptores comerciais, por um período de 2 minutos.
- Captura de fotografias do ambiente, considerando o ponto cardeal norte como referência.
- Caracterização do ambiente, por meio de software.
- Gravação dos eventos ocorridos durante a medição, por meio de software (registro de ocorrências).

Com a viatura em movimento, as seguintes atividades foram realizadas.

- Captura do espectro do sinal *simulcast*.
- Captura dos dados do sinal digital HD Radio com receptor profissional durante toda a rota.
- Gravação do áudio digital com receptor profissional.
- Gravação dos eventos ocorridos durante a rota, por meio de software (registro de ocorrências).

3.4. Planejamento das Rotas

As rotas radiais planejadas para os testes do sistema HD Radio foram escolhidas em função da orientação azimutal e atingem cerca de 60 km em relação ao transmissor da Rádio Cultura FM. As rotas circulares foram definidas em diferentes ambientes da cidade, os quais são classificados conforme a Recomendação ITU-R 1411 [28], a saber: urbano e residencial. A Tabela 6 descreve as rotas realizadas, podendo as rotas radiais ser visualizadas na Figura 15 e as rotas circulares, na Figura 16. Inicialmente foram planejadas seis rotas radiais e seis rotas circulares, no entanto só foram executadas as rotas apresentadas na Tabela 6. As localizações dos pontos fixos de medição ao longo das rotas estão detalhadas no item II do Apêndice deste documento.

Rota	Descrição
Rota R1	Radial Sudeste – Santos (Rodovia Imigrantes)
Rota R2	Radial Sudoeste – Rodovia Regis Bittencourt
Rota R4	Radial Noroeste – Rodovia dos Bandeirantes
Rota R6	Radial Nordeste – Rodovia Ayrton Senna da Silva
Rota Circular C1	Residencial – Av. Governador Carvalho Pinto
Rota Circular C5	Urbana – Estrada de Itapecerica
Rota Circular C6	Urbana - Osasco

Tabela 6 – Descrição das rotas

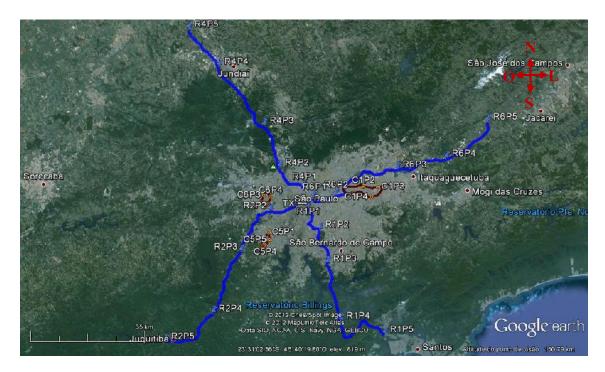


Figura 15 – Rotas radiais utilizadas nos testes com a Rádio Cultura FM

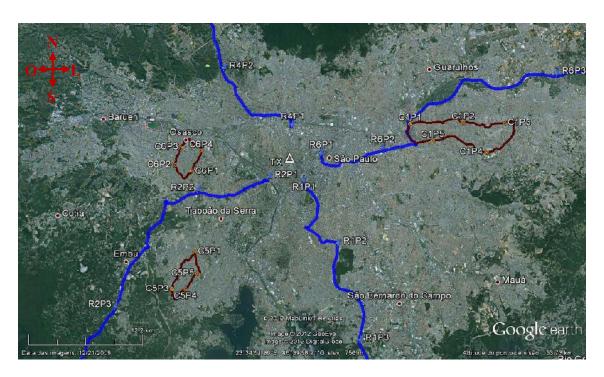


Figura 16 – Rotas radiais (em azul) acrescidas das rotas circulares (em vermelho) utilizadas nos testes com a Rádio Cultura FM

4. Resultados dos Testes

Com base nos dados coletados, foram realizadas as seguintes análises: comparação de medições de intensidade de campo elétrico do sinal analógico com valores teóricos, definição das áreas de cobertura dos sinais analógico e digital para recepções estática e móvel, em função dos limiares de recepção da intensidade de campo elétrico e do valor da SNR.

A recepção analógica FM também foi estudada, da mesma maneira que a do sinal digital HD Radio, exceto para recepção móvel. Assim, dois estudos foram realizados: recepção estática e limitares de recepção.

4.1. Comparação da intensidade de campo elétrico do sinal analógico medida com a previsão teórica

A intensidade de campo elétrico analógico medida é comparada com a previsão teórica para fins de verificação dos valores registrados durante os testes. A intensidade de campo teórica é obtida com o Sistema de Informações da Anatel (SIGAnatel) [25], ferramenta que possui um banco de dados geográficos do Brasil que, entre vários recursos, permite analisar a cobertura do sinal de uma estação de rádio e/ou TV, analisar a propagação em um enlace ponto-a-ponto e gerar o perfil de terreno. O modelo de previsão usa como dado de entrada o perfil do terreno entre o local do transmissor e o ponto de interesse, além da potência transmitida (EIRP), para cálculo da intensidade de campo recebida, empregando a atenuação de espaço livre e a difração causada pelos obstáculos existentes no perfil de terreno.

A Figura 17 apresenta a intensidade de campo elétrico do sinal analógico medida e os valores teóricos calculados, bem como a previsão de espaço livre. A curva da intensidade de campo considerando somente a atenuação de espaço livre é utilizada como referência. A diferença desta curva para os pontos teóricos deve-se ao perfil do terreno que é considerado no modelo de previsão utilizado no SIGAnatel. Os valores medidos estão inferiores aos teóricos porque o modelo de previsão utiliza o perfil do terreno sem incluir a ocupação urbana da cidade de São Paulo, por isso o gráfico da Figura 17 mostra que em vários pontos de medição existe alguma discrepância entre valores teóricos e medidos. No entanto, observa-se que os dois conjuntos de pontos possuem decaimento similar com a distância, como esperado.

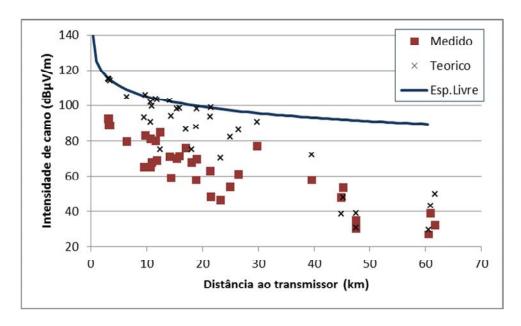


Figura 17 – Previsão teórica vs medições de intensidade de campo elétrico analógico

Com a digitalização do serviço de rádio faz-se necessário utilizar um modelo de previsão mais eficiente devido à variabilidade do sinal recebido. Ressalta-se a necessidade da proposição de um novo modelo para ser usado na faixa de frequência FM, uma vez que no sistema digital a grande diferença entre a previsão e o sinal medido (por exemplo, 20 dB em algumas distâncias no gráfico) pode impactar o planejamento do sistema introduzindo erro no cálculo da cobertura, comprometendo o atendimento do serviço proposto.

4.2. Avaliação da área de cobertura do sinal digital com receptor profissional

4.2.1. Avaliação da área de cobertura do sinal digital com recepção estática

Na medição estática faz-se o registro da recepção digital em cada local de medição. Os resultados são apresentados com o parâmetro Rx_Mode de cada quadro de áudio recebido, que indica a decodificação do sinal digital (Rx_Mode=1) ou a não decodificação (Rx_Mode=0). Nas medições estáticas realizadas com o receptor profissional ocorreu alternância entre a recepção digital e a analógica (*blend*) durante o tempo de registro em cada ponto.

Uma visão global dos resultados pode ser observada na Figura 18 e em detalhe na Figura 19. Os pontos em verde representam uma recepção digital estável, ou seja, Rx_Mode=1 durante todo o intervalo de medição em cada ponto, sem ocorrência de *blends*, os pontos em amarelo representam as ocasiões em que a recepção digital ocorreu com intermitência, indicando que o sinal digital recebido não possui qualidade suficiente para possibilitar que a recepção pudesse ser feita na integralidade do tempo. Este fato leva o sistema a efetuar *blends* para evitar a ocorrência de períodos com ausência de áudio tendo assim uma alternância de recepção digital com recepção analógica durante o tempo de registro da medida (valores de Rx_Mode=1 ou 0). Finalmente os pontos em vermelho indicam a ausência de recepção digital, ou seja, Rx_Mode=0 durante todo o intervalo de medição em cada ponto.

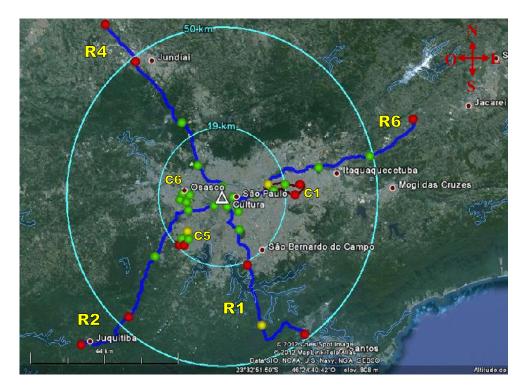


Figura 18 - Resultados da recepção em pontos fixos ilustrados no mapa

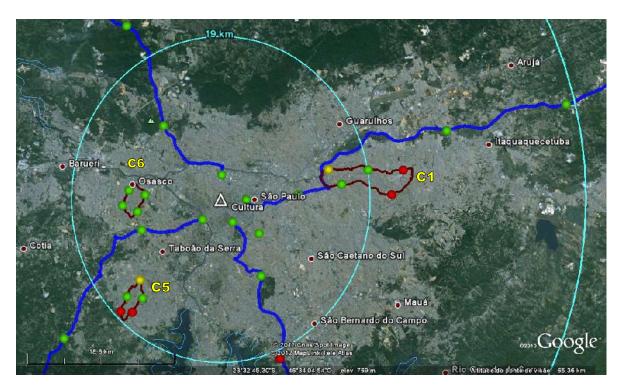


Figura 19- Detalhe dos resultados da recepção em pontos fixos ilustrados no mapa

A Tabela 7 apresenta os resultados da recepção digital nos pontos fixos. Em relação aos 21 pontos medidos dentro do raio de 19 km, foram obtidos 17 pontos com recepção digital, o que corresponde a 81%. Em relação ao total de pontos medidos (35), houve recepção digital em 21 deles (60%).

	Raio de 19 km	Toda a região de testes
Recepção do Áudio Digital	Pontos	Pontos
Sim	17 (81%)	21 (60%)
Alternância com áudio analógico	2 (9,5%)	3 (9%)
Não	2 (9,5%)	11 (31%)
Total de medições	21 (100%)	35 (100%)

Tabela 7 – Resultados da recepção estática nas rotas radiais e circulares

Os três pontos onde houve alternância de recepção digital e analógica (Rx_Mode=0 ou 1) são os pontos marcados em amarelo na Figura 18. A Tabela 8 apresenta para cada um desses pontos o percentual de quadros de áudio que tiveram Rx_Mode=1 e a duração desses quadros, que corresponde ao tempo em que ocorreu a decodificação do áudio digital, além da duração total da medição e da distância ao transmissor.

	Distância ao	Intensidade de campo	de campo SNR Interval		Quadros com Rx_Mode=1	
Pontos	transmissor (km)	elétrico mediano (dBµV/m)	mediano (dB)	medição (min)	Quantidade (%)	Duração (min)
C1P1	14,1	58,3	3,13	4,93	94,78	4,67
C5P1	14,4	63,7	11,03	4,91	96,26	4,72
R1P4	39,3	43,6	1,87	4,92	56,53	2,78

Tabela 8 - Pontos onde Rx_Mode=0 ou 1

O ponto C1P1 está localizado em local residencial e foi verificada a variação na recepção do sinal digital durante a passagem de veículos, conforme o registro de ocorrências da medição.

O ponto C5P1 está localizado em uma estrada com tráfego intenso de veículos.

O ponto R1P4 está localizado na Rodovia dos Imigrantes, com tráfego intenso de veículos, em local próximo à linha de alta tensão, tendo sido observada variação na recepção do sinal digital durante a passagem de caminhões.

O ponto R1P3, a 21,3 km do transmissor, não teve decodificação do sinal digital, embora esteja localizado mais próximo da emissora do que o ponto R1P4 discutido no parágrafo anterior. Embora o perfil entre o ponto de transmissão e R1P3 não seja acidentado, conforme a Figura 20, o ambiente de recepção naquele ponto, situado em rodovia com intenso tráfego de veículos, com morros e vegetação no entorno, pode ter contribuído para a degradação do sinal. O valor de intensidade de campo elétrico foi de 60,4 dBμV/m, próximo do valor nos pontos amarelos (Rx_Mode=0/1) discutidos acima. Embora este valor esteja dentro do limar aceitável para uma boa recepção do sinal digital com o sistema HD Radio, o valor de SNR mediano foi inferior à SNR dos pontos amarelos mencionados na Tabela 8, no valor de 0,16 dB, indicando que não houve decodificação do sinal digital.

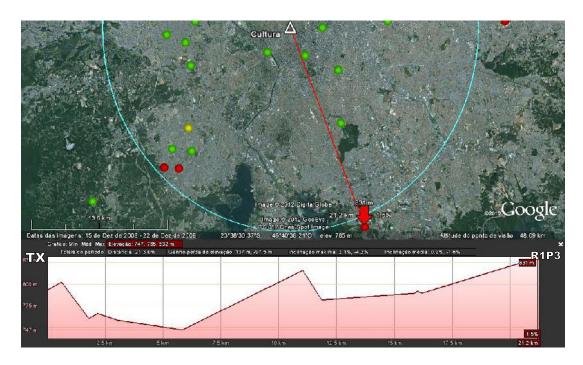


Figura 20-Perfil do terreno entre o centro de transmissão e o ponto R1P3

O gráfico da Figura 21 apresenta a intensidade do campo elétrico mediano classificado conforme os resultados de recepção do parâmetro Rx_Mode em função da distância ao transmissor. Conforme observado no gráfico, o limiar de intensidade de campo elétrico para recepção digital ficou compreendido na faixa de 43 a 50 dB μ V/m. Cabe salientar que esse limiar apenas é válido quando o limiar de SNR para a decodificação do sinal HD Radio é respeitado.

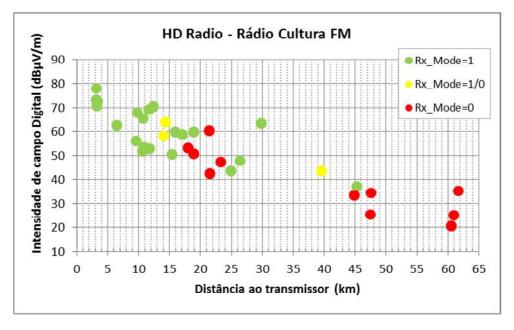


Figura 21-Intensidade de campo digital em função da distância do transmissor

Em relação às rotas circulares, na rota C6 (urbana) em Osasco, situada na distância máxima de 12,4 km da emissora, em todos os quatro pontos de medição houve decodificação de áudio digital.

Na rota C5 (urbana), nos pontos C5P3 (18,9 km) e C5P4 (18 km) (marcados em vermelho a sudoeste do transmissor) não houve decodificação do áudio digital. Sendo rota circular, os pontos estavam sujeitos ao mesmo ambiente de recepção de sinal, ou seja, com níveis semelhantes de ruído ambiente. Os valores medianos da intensidade de campo medidos nestes pontos C5P3 (50,8 dBμV/m) e C5P4 (53,1 dBμV/m) ficaram altos, acima do limiar para uma boa recepção do sinal digital com o sistema HD Radio, porém não houve decodificação do áudio digital porque o limiar necessário de relação sinal-ruído (SNR) do sistema HD Radio para recepção não foi atingido, uma vez que os valores de SNR ficaram abaixo do limiar aceitável, em -0,63 dB e 1,32 dB respectivamente. O perfil do terreno entre o local de transmissão e esses pontos é acidentado com ondulações típicas de subida na direção da região serrana, conforme a Figura 22, o que dificulta a visada direta. O ruído alto em cada local de medição e o perfil acidentado entre a emissora e o local de medição podem ter influenciado na degradação do sinal digital naqueles pontos.

Figura 22- Perfil do terreno entre o centro de transmissão e C5P3

Na rota C1 (direção leste do ponto de transmissão), os pontos C1P3 e C1P4, distantes respectivamente 23,3 km e 21,5 km do transmissor, marcados em vermelho, não tiveram decodificação do áudio digital. O ponto C1P3 estava situado em avenida com tráfego moderado, teve intensidade de campo elétrico de 47,4 dBμV/m e valor SNR de -3,0 dB. O ponto C1P4 estava situado ao lado da estação do metrô Corinthians-Itaquera, em rua com tráfego moderado, teve valor de intensidade de campo elétrico de 42,6 dB μV/m com valor SNR de -3,0 dB. Esses valores de campo estariam dentro do limiar aceitável para uma boa recepção do sinal digital com o sistema HD Radio, caso o limiar necessário de relação sinal-ruído (SNR) do sistema HD Radio para recepção tivesse sido atingido. Entretanto nesses pontos os valores de SNR ficaram iguais a -3,0 dB, abaixo do limiar aceitável. Embora o perfil do terreno entre o local da antena de transmissão e os pontos C1P3 e C1P4 não tenha ondulações grandes a ponto de impedir a visada direta, a ocupação urbana no entorno do local de medição pode ter contribuído para a atenuação do sinal digital.

Por meio da Figura 23, é possível inferir que valores maiores que 7,7 dB para a SNR foram suficientes para decodificação do sinal digital, apesar da existência de um ponto instável a 11 dB de SNR, o que pode ser atribuído à presença de interferência. No intervalo de SNR entre 2 dB e 7,7 dB, houve recepção digital, perfeita em um ponto e instável nos outros dois. Devido à existência de poucos valores nesse intervalo, fica impossível definir um valor ou intervalo aceitável para a SNR no ambiente testado. No entanto, de acordo com a recomendação ITU-R BS. 1114-7 o valor mínimo do SNR para recepção digital com o sistema HD Radio, pode variar de 2,64 dB com taxa de erro de bloco de 0,16 num ambiente puramente gaussiano, até 9,94 dB com taxa de erro de bloco de 0,0202 num ambiente com desvanecimento.

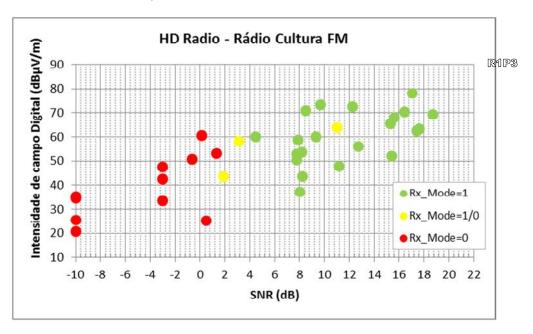


Figura 23-Intensidade de campo digital versus SNR

4.2.2. Avaliação da área de cobertura do sinal digital com recepção móvel

Na avaliação da mobilidade foi empregada a contagem do parâmetro Rx_Mode, o qual indica decodificação ou não-do sinal digital. Os percentuais apresentados correspondem ao total de ocorrências de Rx_Mode=1 (decodificação de sinal digital) dentro de cada trecho avaliado.

Quando há falha na recepção do sinal digital, o receptor HD Radio comuta automaticamente para o sinal analógico, por meio de um mecanismo denominado *blend*. Considerando que o processamento digital insere um atraso no sinal transmitido, o áudio digital naturalmente ficará defasado em relação ao analógico, com atraso correspondente ao tempo de processamento. Sendo assim, na transição do sinal digital para o analógico, e vice-versa, essa diferença é notada pelo ouvinte, podendo ser amenizada atrasando-se o sinal analógico em relação ao digital no transmissor.

O áudio gravado com o receptor profissional durante as medições em mobilidade permitiu observar o funcionamento do mecanismo *blend*, tanto na transição do sinal digital para o analógico quanto no retorno para o sinal digital. No centro de transmissão, não houve nenhum processo de atraso do áudio analógico em relação ao digital. Portanto, ficou claro durante a

campanha de medição que os áudios na recepção têm uma diferença de aproximadamente 8 segundos, com o áudio analógico sempre adiantado em relação ao digital, independentemente da existência de *blends*.

Para o ouvinte, quando o *blend* se inicia, a percepção é de que houve perda de parte da informação, devido ao fato de o áudio analógico estar adiantado em relação ao digital de aproximadamente 8 segundos; no retorno do sinal digital (final do *blend*), o ouvinte percebe a repetição de 8 segundos do áudio escutado anteriormente no formato analógico. Portanto, é necessário o tratamento adequado do tempo de atraso do áudio digital em relação ao analógico no centro de transmissão para que o efeito do *blend* não acarrete desconforto para o ouvinte.

A Figura 24 apresenta o parâmetro Rx_Mode registrado ao longo das rotas, sendo indicados em verde onde Rx Mode=1 e em vermelho onde Rx Mode=0.

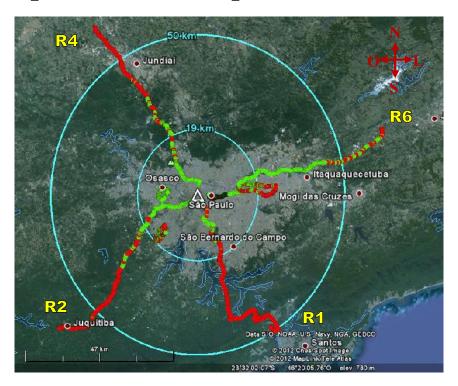


Figura 24 – Parâmetro Rx_Mode registrado nas medições em mobilidade

A Tabela 9 apresenta os resultados gerais da recepção móvel em rotas radiais.

Rota	Trecho	Distância do transmissor ao último ponto do trecho (km)	RX Mode=1 (%)
Rota 1	P1 a P2	10,88	71,6
	P2 a P3	21,41	31,3
	P3 a P4	39,63	8,3
	P4 a P5	47,44	0,1
Rota 2	P1 a P2	10,69	100
	P2 a P3	26,43	73,7
	P3 a P4	44,91	21,8
	P4 a P5	60,54	1,5
Rota 4	P1 a P2	11,79	100
	P2 a P3	24,95	62,5

	P3 a P4	47,55	24,3
	P4 a P5	61,67	0,0
	P1 a P2	9,79	74,7
Rota 6	P2 a P3	29,80	100
NOTA 0	P3 a P4	45,29	87,2
	P4 a P5 60.93	60,93	47,9

Tabela 9 – Resultados da recepção móvel nas rotas radiais da Rádio Cultura FM

A rota R1 (sudeste), no trecho P1 a P2, teve decodificação do áudio digital em 71,6% dos quadros de áudio, e nos seus demais trechos teve pouca cobertura digital.

Na rota R2 (sudoeste) houve decodificação do sinal digital em todo o trecho P1 a P2, que se estende até 10,7 km de distância em relação ao transmissor. No trecho seguinte (P2 a P3), o primeiro *blend* ocorreu a 17 km da emissora. Seguindo no trecho P3 a P4, de 26,4 a 44,9 km, houve decodificação de somente 21,8% dos quadros de áudio digital recebidos dentro desse trecho. No último trecho (P4 a P5), a partir de 44,9 km, praticamente não houve cobertura digital.

Na rota R4 (noroeste), houve decodificação do sinal digital em todo o trecho P1 a P2, que se estende até 11,8 km de distância em relação ao transmissor. No trecho seguinte (P2 a P3), de 11,8 a 24,9 km, houve decodificação de 62,5% dos quadros de áudio digital recebidos dentro desse trecho. Seguindo no trecho de 24,9 a 47,5 km (P3 a P4), o percentual foi de 24,3%, e, no último trecho, de 47,5 a 61,6 km (P4 a P5), não houve cobertura digital.

Na rota R6 (nordeste), no trecho até 9,8 km, (P1 a P2) houve decodificação de 74,7% dos quadros de áudio. No trecho P2 a P3, desde 9,8 km até 29,8 km da emissora, houve decodificação de áudio em 100% dos quadros recebidos. Seguindo no trecho de 29,8 a 45,3 km (P3 a P4), o percentual foi de 87,2 %, e, no último trecho, de 45,3 a 60,9 km (P4 a P5), o percentual foi de 47,9%.

No detalhe da área urbana de São Paulo mostrado na Figura 25 é possível visualizar o comportamento do parâmetro Rx Mode nas rotas circulares.

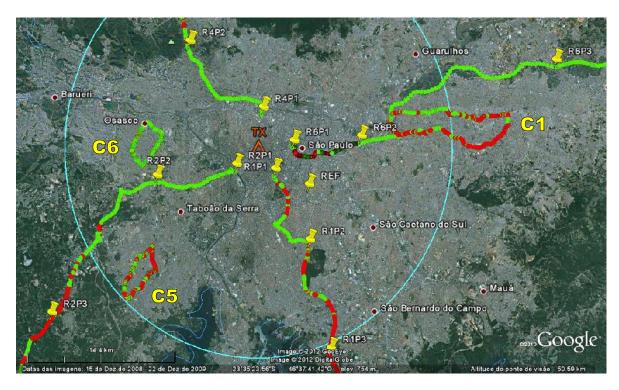


Figura 25 – Detalhe do registro do Rx Mode na área urbana de São Paulo

A Tabela 10 apresenta os resultados gerais da recepção móvel nas rotas circulares.

Rota	Tipo/Local	Trecho	Maior distância do	Duração (min)	RX Mode=1
1.5ta		1126110	transmissor à rota (km)	2 a. a. g. a. (mm)	(%)
		P1 a P2		13,36	67,3
		P2 a P3		12,89	39,6
Circular C1	Residencial	P3 a P4	23,3	13,99	13,6
		P4 a P5		18,18	40,0
		P5 a P1		6,60	30,4
		P1 a P2		8,40	74,1
	Urbana	P2 a P3	18,9	8,04	45,9
Circular C5	(Estrada de	P3 a P4		8,39	52,3
	Itapecerica)	P4 a P5		16,84	38,4
		P5 a P1		17,73	38,6
		P1 a P2		15,71	97,9
Circular C6	Urbana	rbana P2 a P3	12,4	7,73	95,1
Circular Co	(Osasco)	P3 a P4	12,4	15,54	100
		P4 a P1		9,71	97,6

Tabela 10-Resultados da recepção móvel nas rotas circulares da Rádio Cultura FM

Conforme apresentado anteriormente na Figura 16, a rota circular C1 situa-se em ambiente residencial, na direção leste da emissora, passando pelos bairros da Penha, Vila Marieta, Itaquera e Vila Matilde. O trecho entre P1 e P2 seguiu pela Avenida Governador Carvalho Pinto, até a distância aproximada de 19 km da emissora, tendo apresentado o melhor percentual de quadros de áudio digital decodificados (67,3%) dentre os trechos dessa rota C1, os quais apresentaram vários *blends*. Considerando que a altitude do local da emissora e a altitude da região onde a rota C1 está localizada não possuem diferenças significativas, a não decodificação do sinal digital nos seus vários trechos pode ter sido influenciada pela ocupação urbana.

A rota C5 está em ambiente urbano, próximo da Estrada de Itapecerica, na direção sudoeste em distância máxima de 18,9 km da emissora. Conforme discutido nos resultados das medições estáticas, o perfil do terreno entre a emissora e a região desta rota é acidentado com ondulações típicas de subida na direção da região serrana, conforme a Figura 22, que constituem obstrução para o sinal. O trecho entre P1 e P2 apresentou o melhor percentual de quadros de áudio digital decodificados (74,1%) dentre os trechos dessa rota C5, os quais apresentaram vários *blends*

A rota C6 situada em ambiente urbano, na região de Osasco, na direção oeste do transmissor, apresentou resultado geral melhor que as rotas C1 e C5. A distância máxima da região desta rota para a emissora foi de 12,4 km, estando mais próxima do que as rotas C1 e C5. O trecho P3 a P4 teve decodificação do áudio digital durante todo o tempo de medição. Nos demais três trechos desta rota (P1 a P2, P2 a P3 e P4 a P1) houve decodificação do áudio digital com ocorrência de poucos *blends*.

4.3. Avaliação objetiva do áudio digital de receptores comerciais

4.3.1. Avaliação do áudio digital de receptor comercial nas medições estáticas

A avaliação do áudio HD Radio com receptores comerciais é feita para verificação do áudio recebido pelo grande público. O mecanismo *blend* desses receptores evita o silenciamento do áudio quando não ocorre decodificação do sinal digital, comutando-o para recepção analógica. Sendo assim, essa avaliação é feita objetivamente por meio da verificação da ocorrência de *blends* no áudio gravado durante o intervalo de medição em cada ponto fixo, sendo a recepção do sinal classificada como "Recepção Digital" quando houve decodificação do sinal digital em todo o período de gravação, "Recepção Mista" quando houve ocorrências de *blends* e "Recepção Analógica" quando não houve decodificação do sinal digital.

Na avaliação foram utilizados dois modelos de receptores comerciais, Sony (receptor de mesa) e JVC (automotivo), nas medições em 35 pontos fixos. A Tabela 11 apresenta os resultados dentro do raio de 19 km e em toda a região onde houve a campanha de testes.

Recepção	Raio de	e 19 km	Toda a região de testes		
	SONY	JVC	SONY	JVC	
Digital	15 (71%)	17 (81%)	16 (46%)	19 (54%)	
Mista (alternância com áudio analógico)	0 (0%)	1 (5%)	0 (0%)	2 (6%)	
Analógica	6 (29%)	3 (14%)	19 (54%)	14 (40%)	
Total de medições fixas	21 (1	.00%)	35 (1	L00%)	

Tabela 11 – Medições fixas com receptores comerciais

A Figura 26 e a Figura 27 apresentam esses resultados considerando a localização dos pontos de medição e a intensidade de campo elétrico digital mediano registrada pelo receptor profissional.

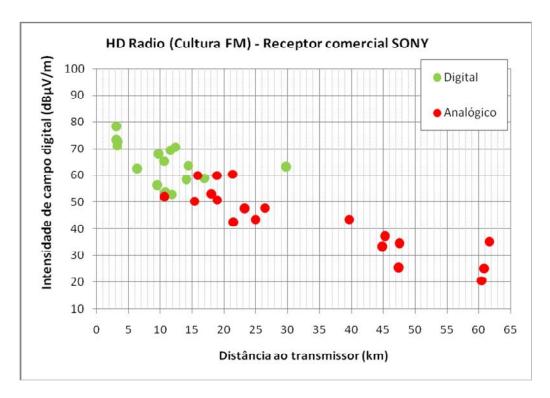


Figura 26 - Recepção do áudio com receptor comercial SONY em medições fixas

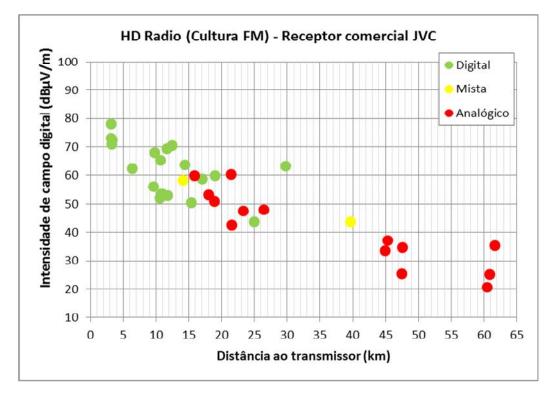


Figura 27 – Recepção do áudio com receptor comercial JVC em medições fixas

Nesses gráficos, observa-se que o limiar de intensidade de campo elétrico para recepção digital com o receptor SONY esteve entre 50 e 55 dB μ V/m, e o limiar para o receptor JVC entre 45 e 50 dB μ V/m.

4.4. Resultados da Recepção Analógica FM

4.4.1. Avaliação da área de cobertura em recepção estática

A cobertura do sinal analógico FM da Rádio Cultura FM foi estimada para permitir a comparação com a cobertura do sinal digital. Essa estimativa é feita com base na qualidade do áudio analógico, o qual é avaliado subjetivamente seguindo as orientações da Recomendação UIT-R BS 1284 [22]. Foram utilizadas as gravações de áudio analógico feitas em pontos fixos de medições, de dois receptores comerciais, NKS e TOSHIBA. Esses áudios foram avaliados por um grupo de pessoas, que atribuíram notas variando de 1 a 5, conforme a classificação da Recomendação UIT-R BS 1284 (Tabela 12). A partir das notas atribuídas para cada áudio referente a cada receptor, obteve-se a média aritmética da qualidade do áudio tanto para o NKS como para o TOSHIBA. Para determinar um valor único para a qualidade do áudio analógico em cada ponto, foi realizada a média aritmética dos valores de cada receptor. Em seguida, os valores de qualidade calculados foram utilizados na análise da área de cobertura analógica. A Tabela II.4 do item II do Apêndice apresenta as médias das notas atribuídas aos áudios referentes aos receptores comerciais. É importante ressaltar que não foram realizadas medições móveis do áudio analógico FM.

Quality	Impairment
5 Excellent	5 Imperceptible
4 Good	4 Perceptible, but not annoying
3 Fair	3 Slightly annoying
2 Poor	2 Annoying
1 Bad	1 Very annoying

Tabela 12 – Escala de avaliação da qualidade de áudio da Recomendação UIT-R BS 1284

Para consolidação dos resultados obtidos neste trabalho, foram definidos três limiares de recepção: "Recepção Boa" contém as notas entre 5 e 3 inclusive, "Recepção Pobre" com notas entre 3 e 2, e "Recepção Ruim" com notas iguais ou menores que 2. A Tabela 13 apresenta a definição da classificação das notas empregadas neste trabalho.

Notas	Classificação	Definição
$3 \le \text{Nota} \le 5$	Recepção Boa	Áudio com presença de ruído, desde imperceptível a leve
2 < Nota < 3	Recepção Pobre	Presença de ruído ao ponto da informação do áudio tornar-se ininteligível
Nota ≤ 2	Recepção Ruim	Somente ruído

Tabela 13 – Classificação das notas subjetivas do áudio adotadas neste trabalho

A classificação da qualidade do áudio analógico FM diurno obtido em cada ponto fixo a partir de medições da Cultura FM é apresentada na Figura 28, com a intensidade de campo analógico em função da distância ao transmissor, e na Figura 29 os mesmos pontos são apresentados no mapa. A qualidade do áudio em cada ponto fixo é representada da seguinte forma: os pontos em verde representam "Recepção Boa", em amarelo, "Recepção Pobre" e em vermelho, "Recepção Ruim".

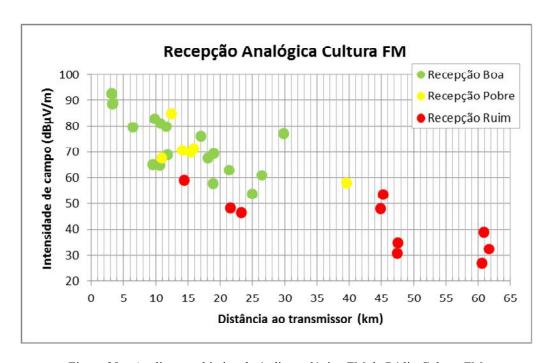
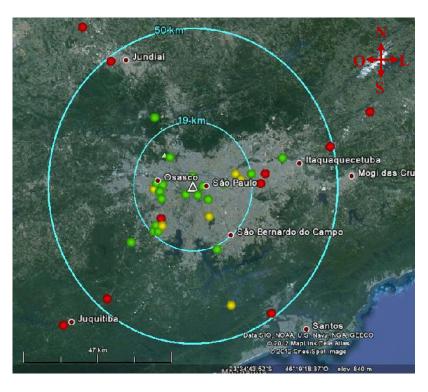



Figura 28 – Avaliação subjetiva do áudio analógico FM da Rádio Cultura FM

(a)

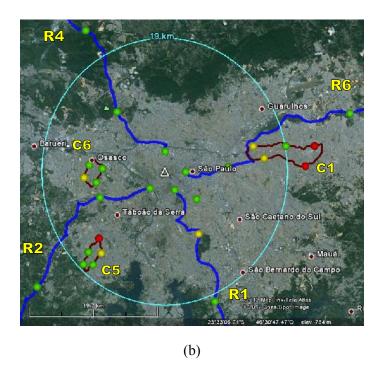


Figura 29 – (a) Recepção estática do áudio analógico no mapa; (b) detalhe do raio de 19 km

Na Figura 28 e Figura 29 é possível verificar que a recepção analógica até o raio de 19 km em relação ao transmissor possui certa intermitência, pois o áudio analógico foi classificado com os três tipos, "Recepção Boa", "Recepção Pobre" e "Recepção Ruim". Após 19 km há ainda 4 (quatro) pontos com "Recepção Boa". Para pontos próximos do raio de 50 km, indicado por círculo de referência na Figura 29 (a), verificou-se por meio dos resultados que a qualidade da recepção analógica ficou pior nos pontos mais afastados da emissora, ou seja, foi classificada com "Recepção Ruim". Na Figura 29 (b) é apresentado o detalhamento da das medições até a distância aproximada de 19 km.

Na rota R1 (sudeste), no ponto R1P3, localizado na distância de 21,4 km da emissora, o áudio analógico foi classificado como "Recepção Boa", porém no ponto anterior R1P2 (10,8 km) a classificação foi "Recepção Pobre". Nos pontos seguintes a classificação foi "Recepção Pobre" (R1P4 a 39,6 km) e "Recepção Ruim" (R1P5 a 47,5 km).

Na rota R2 (sudoeste) o ponto R2P3, localizado na distância de 26,4 km teve o áudio analógico classificado como "Recepção Boa", e nos pontos seguintes a classificação foi de "Recepção Ruim".

Na rota R4 (noroeste) o ponto R4P3, localizado na distância de 24,9 km teve o áudio analógico classificado como "Recepção Boa", e nos pontos seguintes a classificação foi de "Recepção Ruim".

Na rota R6 (nordeste), no ponto R6P3, localizado na distância de 29,8 km da emissora, o áudio analógico foi classificado como "Recepção Boa". Porém no trecho em que a rota circular C1 passa próximo à rota R6, conforme pode ser visto na Figura 29 (b), há um ponto amarelo na distância de 18,9 km, que teve "Recepção Pobre".

Observa-se no gráfico da Figura 28 que o limiar de intensidade de campo elétrico do sistema analógico FM para uma "Recepção Boa" foi de aproximadamente 60 dBµV/m. Este valor está

próximo do valor de 54 dB μ V/m definido no regulamento técnico brasileiro para áreas rurais e de 66 dB μ V/m definido para áreas urbanas [23] [24].

O áudio analógico foi registrado em 35 locais e a classificação da recepção encontra-se na Tabela 14. Dentro de um raio de 19 km em relação ao transmissor, houve 15 pontos (71,4%) com "Recepção Boa" analógica, 5 pontos foram considerados como "Recepção Pobre" e 1 ponto teve "Recepção Ruim".

Decemen Apológica	Raio de 19 km	Toda a região de testes
Recepção Analógica	Pontos	Pontos
Воа	15 (71,4%)	19 (54,3%)
Pobre	5 (23,8%)	6 (17,1%)
Ruim	1 (4,8%)	10 (28,6%)
Total de medições	21 (100%)	35 (100%)

Tabela 14 – Resultados do áudio analógico em recepção estática

4.5. Comparação entre os resultados da recepção dos áudios analógico e digital

Os resultados referentes à qualidade do áudio analógico (sistema FM) e à recepção digital profissional (sistema HD Radio) podem ser comparados para fins de verificação de atendimento nos pontos fixos e extensão de cobertura. A Tabela 15 apresenta os resultados em cada ponto fixo.

Pontos	Distância ao transmissor (km)	Qualidade do áudio analógico	RX Mode
Ponto de referência	6,43	3,8	1
C1P1	14,09	2,6	0/1
C1P2	18,96	4,3	1
C1P3	23,29	1,0	0
C1P4	21,54	1,3	0
C1P5	15,36	2,2	1
C5P1	14,38	1,8	0/1
C5P2	17,01	4,5	1
C5P3	18,92	4,2	0
C5P4	18,04	4,3	0
C5P5	15,87	2,4	1
C6P1	10,63	4,1	1
C6P2	12,42	2,3	1
C6P3	11,65	4,4	1
C6P4	9,57	3,7	1
R1P1	3,18	3,5	1
R1P2	10,88	2,2	1
R1P3	21.41	4,0	0
R1P4	39,63	2,8	0/1
R1P5	47,48	1,1	0

R2P1	3,39	3,3	1
R2P2	10,69	4,4	1
R2P3	26,43	3,0	1
R2P4	44,91	1,0	0
R2P5	60,54	1,0	0
R4P1	3,14	3,9	1
R4P2	11,79	3,0	1
R4P3	24,95	3,4	1
R4P4	47,55	1,0	0
R4P5	61,66	1,0	0
R6P1	3,23	3,1	1
R6P2	9,79	3,6	1
R6P3	29,81	4,5	1
R6P4	45,28	1,0	1
R6P5	60,94	1,3	0

Tabela 15 – Resultados comparativos entre os áudios analógico e digital na recepção estática

Os resultados mostram que, dos 35 pontos fixos, houve mais pontos com decodificação de sinal digital registrados com o receptor profissional (21 pontos), do que com áudio analógico com qualidade boa (19 pontos). Isso também ocorreu considerando o raio de 19 km a partir do transmissor, onde houve 17 pontos com decodificação de áudio digital e 15 com áudio analógico com qualidade boa.

Os valores da Tabela 15 são apresentados na Figura 30. Conforme a classificação definida na Tabela 13, o limiar para "Recepção Boa" do áudio analógico corresponde à nota 3. Nessa avaliação, quando o Rx_Mode foi igual a 1, atribuiu-se a nota máxima para a qualidade do áudio digital, devido às características intrínsecas do sistema digital HD Radio com a configuração utilizada. Apenas para fins de visualização dos pontos onde Rx_Mode foi 0/1, estes estão indicados como uma nota "média" igual a 2,5 no áudio digital.

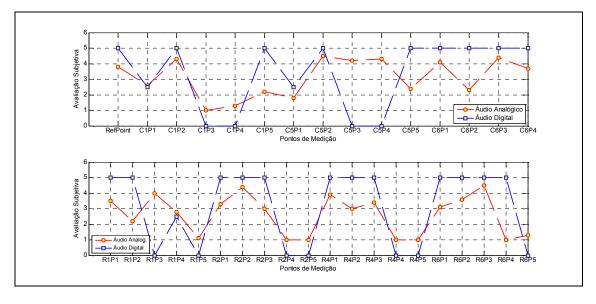


Figura 30 – Gráfico de notas da avaliação dos áudios analógico e digital

A Tabela 16 mostra a consolidação dos resultados da Tabela 15, indicando a quantidade de pontos em cada situação de recepção em relação à decodificação do áudio digital e a qualidade de recepção do áudio analógico correspondente:

- pontos onde houve áudio digital e o analógico estava bom;
- pontos onde houve áudio digital, porém o áudio analógico estava pobre e ruim;
- pontos onde não houve áudio digital e onde Rx_Mode=0/1, porém o áudio analógico estava bom;
- pontos onde não houve áudio digital e onde Rx_Mode=0/1, e o áudio analógico estava pobre e ruim.

		Recepção do	Áudio Analógico	
		Boa	Pobre e Ruim	Totais
Recepção do Áudio Digital	Sim (Rx_Mode=1)	16 (45,7%)	5 (14,3%)	21 (60%)
Recep Áudio	Não (Rx_Mode=0) e Rx_Mode=0/1	3 (8,6%)	11 (31,4%)	14 (40%)
	Totais	19 (54,3%)	16 (45,7%)	35 (100%)

Tabela 16 – Resumo dos resultados comparativos entre os áudios analógico e digital na recepção estática

Em 16 locais (45,7%) houve recepção digital e analógica boa simultaneamente. Em 5 locais (14,3%) houve recepção digital enquanto que a analógica estava classificada como "Pobre" ou "Ruim". Dos 11 locais em que, simultaneamente, a recepção analógica foi "Pobre" ou "Ruim" e o Rx_Mode foi igual a 0 ou 0/1, 7 estão próximos do raio de 50 km, conforme pode ser visto na Figura 29.

Verificou-se por meio dos testes que o áudio digital atendeu a mais pontos do que o áudio analógico com qualidade de recepção "Boa" dentro do raio de 19 km, caracterizando bom desempenho do sistema digital nessa região. Após 19 km e até a distância aproximada de 50 km, houve atendimento similar dos dois sistemas, quando comparada a recepção digital à recepção analógica com qualidade boa, de onde se conclui que a cobertura do HD Radio é similar à cobertura do FM nessa área.

Portanto, pode ser concluído que, de uma forma geral, no ambiente testado, o sinal digital tem área de cobertura similar à do sistema analógico, possuindo um desempenho melhor que o sistema FM no raio de 19 km a partir do transmissor, estando 20 dB abaixo do FM (aproximadamente 1% da potência EIRP do sinal analógico).

4.6. Impacto do sinal digital HD Radio sobre o áudio analógico

A avaliação do impacto da presença do sinal digital HD Radio sobre o áudio analógico é realizada por meio da avaliação subjetiva de áudios analógicos de receptores comerciais, que foram gravados durante medições com o transmissor digital ligado e desligado. Para este fim, foram feitas três medições, em cada situação do transmissor, em local situado a cerca de 5 km da estação transmissora da Cultura FM. Os áudios gravados de dois receptores analógicos comerciais (modelos NKS e TOSHIBA) foram analisados subjetivamente conforme orientações da Recomendação UIT-R BS 1284. Foi verificado que a presença do sinal digital HD Radio não causou impacto na qualidade do áudio analógico FM.

A Figura 31 ilustra os registros obtidos do analisador de espectro no ponto de medição, nas situações de sinal digital desligado e ligado.

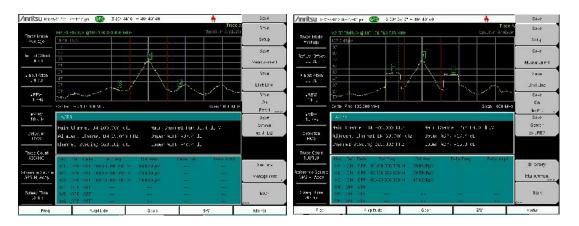


Figura 31 – Registro do espectro com sinal digital desligado (esq) e ligado (dir)

APÊNDICE

I. Sistema HD Radio

I.1. Histórico e padronização

O sistema HD Radio, marca comercial pertencente à empresa norte-americana *iBiquity Digital Corporation*, teve seu desenvolvimento iniciado na década de 1990 e até a data atual é a única tecnologia licenciada pela *Federal Communications Commission* (FCC) para realizar a radiodifusão sonora digital nas faixas de MF e VHF nos EUA.

À época de seu desenvolvimento, a tecnologia empregada no HD Radio se configurava como a principal alternativa às tecnologias correntes para a implantação da radiodifusão sonora digital no país que oferecesse qualidade superior de áudio sem a necessidade de alocação de uma faixa separada de espectro de frequências para sua alocação. Esta realização se dá pelo HD Radio ter sido o pioneiro na geração de um sistema híbrido¹ que implementa o chamado *in-band on-channel* (IBOC) e permite a transmissão dos sinais analógico e digital a receptores fixos, portáteis e móveis dentro da mesma canalização destinada à emissora radiodifusora. A transmissão deste sinal digital agregado ocorre pela adição de subportadoras nas bandas laterais ao sinal analógico que devem obedecer a máscaras de transmissão estabelecidas pelo FCC que limitam a potência digital transmitida relativa ao sinal analógico e aos sinais em canais adjacentes [2] [3].

O National Radio Systems Comittee (NRSC) é a organização responsável pelo desenvolvimento de padrões técnicos para a indústria de radiodifusão sonora nos EUA. A norma atual, emitida em 2005 e com sua mais recente revisão de setembro de 2011 [1], prevê a implantação do sistema de radiodifusão sonora digital em: canais de radiodifusão MW (540 a 1700 kHz) utilizando largura de banda de aproximadamente 10 kHz e 20 kHz para o sinal digital, de acordo com a configuração escolhida. Com essas configurações é possível utilizar larguras de banda de áudio analógico de 5, 8 e 9,4 kHz [27]; canais em VHF (88,1 a 107,9 MHz) utilizando largura de banda de aproximadamente 200 kHz e 400 kHz para o sinal digital, de acordo com a configuração escolhida. O sinal digital transmitido em MW no modo híbrido apresenta-se dividido em duas bandas laterais (superior e inferior em relação ao sinal analógico). A configuração denominada "padrão" utiliza aproximadamente 10 kHz de largura de banda em cada lateral, totalizando aproximadamente 20 kHz para a transmissão do sinal digital. Além dessa configuração, o sistema permite reduzir as bandas laterais para aproximadamente 5 kHz, totalizando aproximadamente 10 kHz para a transmissão do sinal digital. A taxa de dados alcançada no canal lógico destinado ao áudio e dados atinge 36,4 kbit/s, distribuídos em 3 (três) canais lógicos [20].

O sinal digital transmitido em VHF no modo híbrido apresenta-se dividido em duas bandas laterais (superior e inferior em relação ao sinal analógico), possibilitando duas configurações: híbrida e híbrida estendida (com uma, duas ou quatro partições). Neste caso, a taxa de dados nos canais lógicos destinada ao áudio e dados depende da configuração escolhida, variando de aproximadamente 99,4 kbit/s até 148 kbit/s.

¹ Alternativamente à versão híbrida, existe o sistema all-digital, que não contém componente analógica modulada.

Fontes de áudio digitais devem ser inseridas nos chamados serviços de programação para então serem encapsuladas e multiplexadas, fases que antecedem a codificação e a transmissão do sinal digital. A norma vigente não especifica mecanismos de codificação e de compressão das fontes de áudio, mas a *iBiquity* desenvolveu o algoritmo *HD Radio Audio Compression* (HDC) [4], baseado no codificador MPEG-4 HE-AAC, para ser utilizado nos sistemas MW e VHF de HD Radio [5].

A disseminação do padrão pelo mundo está se dando em diferentes estágios em vários países. Em abril de 2012 foi anunciado o lançamento da primeira emissora HD Radio no México, na capital federal, como a primeira de uma série de outras emissoras programadas para adoção no país [8]. Além desse, diversos outros países operam de forma limitada, como República Dominicana, Suíça, Ucrânia e Indonésia. Países como Canadá, Argentina e China estão realizando testes de campo com o padrão [9].

Um grande número de testes de campo com o sistema HD Radio, a fim de avaliar o desempenho do sistema em variadas condições, foi realizado nos EUA. O NRSC criou um fórum para todos os interessados em radiodifusão digital terrestre avaliarem o sistema e proverem informações ao FCC. Em 1999 e 2000, o NRSC desenvolveu seu primeiro conjunto de guias de teste, que foram desenvolvidos para validação do sistema HD Radio, incluindo ensaios de laboratório e de campo. Em 2001, a iBiquity completou um extensivo programa de testes da tecnologia nas faixas de AM e FM, seguindo os procedimentos de testes definidos pelo NRSC. Em 2002, o NRSC completou a avaliação do sistema e recomendou à FCC autorizar a tecnologia para operação.

Entre os testes realizados pela iBiquity estão incluídos a avaliação da transmissão na faixa de AM no período noturno [10] e o estudo da compatibilidade com o serviço analógico [11]. Nesses documentos é relatado que o sinal digital não foi capaz de cobrir todas as áreas correntemente servidas pelo serviço analógico, mas atendeu às áreas primárias das estações avaliadas. Quanto à compatibilidade, foram detectados impactos mínimos em estações transmissoras regionais e nenhum impacto foi detectado em estações locais. Em sequência a estes, a iBiquity realizou estudos na transmissão all-digital nas faixas de AM [12] e FM [13]. Ambos os relatórios atestaram o desempenho aprimorado do sistema nessas condições. Foram realizadas pela iBiquity, em [14] [15], medições para estudo de desempenho do sistema na faixa de FM, no modo híbrido, realizados nas cidades de São Francisco e Las Vegas, nos Estados Unidos. Os resultados apresentados demonstraram qualidade de recepção do sinal digital superior à experimentada pelo serviço analógico e, além disso, nas localidades onde ocorreu ausência de sinal digital, a comutação automática (blend) para recepção do sinal analógico ocorreu de forma satisfatória. No mesmo período, testes de campo foram realizados pela National Public Radio (NPR) [16], com o objetivo de avaliar o desempenho da recepção móvel do padrão, na faixa de FM. Os testes foram conduzidos em quatro cidades americanas e os resultados são exibidos graficamente, ilustrando a recepção do sinal e o campo elétrico recebido ao longo das rotas. A partir desses resultados foram traçados contornos da área de recepção do sinal acima de 95% do tempo. Inferiu-se então que sua área de serviço recai normalmente sobre a área de serviço de 60 a 70 dBμV/m de uma estação FM típica. Um estudo da cobertura do serviço digital na faixa de FM foi conduzido nos Estados Unidos [17], onde foi realizada a avaliação do campo elétrico recebido em função da qualidade da recepção do sinal digital, também com a finalidade de definir áreas de cobertura para taxas de 90 e 97% de serviço.

I.2. Características técnicas do Sistema HD Radio

O IBOC (*In-Band On-Channel*) é uma tecnologia de rádio digital conhecida internacionalmente como Sistema Digital C [18]. Esta tecnologia, desenvolvida pela *iBiquity Digital Corporation*, é apropriada para a introdução da Radiodifusão Sonora Digital (DSB-Digital Sound Broadcasting) porque permite que estações FM existentes transmitam o mesmo conteúdo de programação nos sinais analógico e digital sem a necessidade de novas alocações de espectro para o sinal digital. O sinal digital é posicionado dentro da máscara espectral analógica FM.

O sinal digital IBOC ocupa as bandas laterais inferior e superior da máscara de emissão de radiofrequência (RF) da transmissão analógica convencional em FM. O conteúdo transmitido na banda superior é o mesmo transmitido na banda inferior de modo que a perda de informação em uma das bandas laterais, causadas por exemplo por interferência de canal adjacente, não afete a performance de recepção do sinal IBOC, caracterizando uma diversidade de frequência. Além da diversidade de frequência o sistema apresenta também diversidade de atraso. Assim o receptor escolhe qual palavra código recebida da banda lateral inferior e superior possui a menor probabilidade de conter erros.

Esta tecnologia híbrida transmite simultaneamente o sinal analógico e sinal digital, com o mesmo conteúdo de áudio. Devido aos atrasos de processamento do sinal digital do sistema HD Radio, recomenda-se atrasar o áudio analógico para haver sincronização (alinhamento no tempo) com o áudio digital. Esse alinhamento no tempo é necessário para atender às transições (*blends*) do receptor HD Radio. Os níveis de áudio entre os dois *streams* de áudio também devem ser ajustados para que ocorra uma transição suave durante o *blend* do receptor. Quando o atraso e o ajuste do nível do áudio são feitos adequadamente, o *blend* entre os *streams* digital e analógico é imperceptível.

Como exemplos de aplicações, o IBOC pode transmitir serviços de áudio e serviços de dados, permitindo desde informações básicas relativas à programação (título da música, nome do artista), informações da estação, até a visualização de texto e o oferecimento de serviços adicionais que são previstos para apresentar informações de trânsito, previsão do tempo, resultados esportivos, bolsa de valores e comerciais.

I.2.1. Modos de operação do sistema HD Radio na faixa FM

O sistema IBOC oferece três modos de operação: Modo Híbrido (*Hybrid Mode*), Modo Híbrido Estendido (*Extended Hybrid Mode*) e Modo Todo Digital (*All Digital Mode*). Os dois primeiros modos são adequados para o período de transição no qual o sistema analógico permanece em operação, pois contêm o sinal analógico FM, enquanto que no terceiro modo somente existe o sinal digital. Os três modos estão de acordo com a máscara de emissão espectral do serviço em FM da FCC. Em cada modo o espectro é dividido em diversas bandas laterais que representam os vários grupos de subportadoras.

O sinal digital é transmitido nas bandas laterais principais primárias (PM-*Primary Main*) nos dois lados do sinal analógico no Modo Híbrido. O nível de potência em cada banda lateral é inferior à potência total do sinal analógico FM. Este pode ser monofônico ou estéreo e pode incluir canais auxiliares de comunicação (*Subsidiary Communications Authorization, SCA*).

No Modo Híbrido Estendido a largura de faixa das bandas laterais híbridas pode ser estendida na direção do sinal analógico FM para aumentar a capacidade de transmissão (kbps) do sinal

digital. Este espectro adicional, alocado no limite interno das bandas primárias principais, é denominado banda lateral primária estendida (PX-*Primary Extended*).

O Modo Todo Digital oferece a característica mais diferenciada do sistema, na qual o sinal analógico é removido e a largura de faixa das bandas laterais digitais primárias é totalmente estendida, conforme o modo Híbrido Estendido. Além disso, a forma de onda permite bandas laterais secundárias de baixa potência que são transmitidas no espectro liberado pelo sinal analógico FM.

I.2.2. Diversidades no tempo e na frequência

O sistema HD Radio apresenta diversidade de frequência e diversidade temporal a fim tornar o sistema mais robusto em relação à ação deletéria do canal de propagação RF.

A diversidade de frequência é feita transmitindo-se a mesma informação nas bandas laterais superior e inferior. A diversidade de frequência é utilizada a fim de se mitigar os efeitos do canal de desvanecimento plano. O princípio da diversidade de frequência para combater os efeitos deletérios do canal de desvanecimento plano considera que os sinais recebidos separados em frequência com uma distância maior que a banda de coerência do canal são descorrelatados. Assim a probabilidade de que ambos os sinais recebidos estejam fortemente atenuados no mesmo instante de tempo é menor que a probabilidade de que apenas um sinal de uma determinada banda de frequência esteja fortemente atenuado.

Já a diversidade temporal é utilizada para mitigar os efeitos da variação temporal do canal. Aqui dois sinais idênticos são transmitidos em diferentes instantes de tempo. Quando o receptor está em movimento (por exemplo, um veículo), os sinais recebidos nos dois instantes de tempo estarão descorrelatados quando a diferença de tempo corresponder a no mínimo metade do comprimento de onda de RF. A distância requerida depende da velocidade do receptor de modo que a diversidade temporal não é efetiva no combate a canal de desvanecimento plano quando o receptor está parado.

No sistema transmissor, antes da modulação dos dados das subportadoras pelos bits das palavras códigos, uma réplica de cada palavra código a ser transmitida redundantemente é gerada e atrasada por uma certa quantidade de tempo que depende da velocidade esperada do receptor, porém um atraso entre 10ms a 500ms deve ser adequado em muitas circunstâncias. A réplica atrasada das palavras códigos é utilizada para modular as subportadoras localizadas na banda lateral superior (inferior) enquanto que as palavras códigos originais são utilizada para modular as subportadoras localizadas na banda lateral inferior (superior). Como resultado o sinal composto pelas bandas laterais redundantes superior e inferior que correspondem ao sinal de uma palavra código específica possui diversidade temporal e em frequência.

No sistema receptor, o sinal recebido nas bandas laterais superior e inferior distorcido pelo canal e somado a ruído e interferência é demodulado para gerar a estimativa da palavra código transmitida. A demodulação da banda lateral superior é independente da demodulação da banda lateral inferior (exceto pelos intervalos entre os sinais que são conhecidos), sendo geradas duas estimativas da palavra código. Quando o transmissor utiliza uma réplica atrasada da palavra código para modular a banda lateral superior ou inferior, ou seja, utiliza diversidade temporal, a implementação do sistema de recepção inclui um atraso da mesma quantidade de tempo depois da demodulação da banda lateral superior ou inferior. Assim as duas estimativas da palavra

código correspondente à mesma palavra código transmitida (e consequentemente às mesmas fontes de bits de informação) devem ser comparadas no mesmo instante de tempo. O sistema receptor então: 1-combina as duas estimativas de palavras códigos para formar uma única estimativa que é então decodificada, ou 2-seleciona a estimativa de palavra código com menor probabilidade de possuir erros e a utiliza na decodificação.

A determinação do par "palavra código recebido-palavra código decodificada" é feita com base em uma palavra código por vez e não requer conhecimento prévio de qual palavra código (correspondente ao sinal na banda lateral superior ou inferior) que possui maior probabilidade de ser perturbado por ruído, interferência ou distorção do canal de propagação RF.

I.2.3. Mecanismo Blend

Nos sistemas de transmissão Híbrido e Híbrido Estendido, além das diversidades em frequência e temporal aplicadas no sinal digital HD Radio, o sistema também utilizam um método chamado de *blending* para mitigar os efeitos de interrupções intermitentes na recepção do sinal digital. Como no sistema HD Radio o sinal analógico e o digital transmitem a mesma informação, esse método utiliza-se da informação transmitida no sinal analógico quando há uma interrupção na recepção do sinal digital, realizando comutação entre os dois sinais.

A métrica utilizada pelo sistema para determinar se um sinal digital está interrompido e chavear para o modo analógico é a MER (*Modulation Error Ratio*) das subportadoras de referência. Um valor típico de MER de 11 dB na subportadora de dados e de referência é considerado para que o sistema entre no modo de *blend* [21].

I.2.4. Limites de emissões espectrais FM

Os requisitos para os limites de emissões espectrais nas transmissões Híbridas e na transmissão Digital Total são apresentados neste item [19].

Considera-se que zero (0) dBc é definido como a potência total da portadora analógica FM. Nas transmissões Híbridas o requisito é que o ruído e os sinais espúrios originados de todas as fontes, incluindo ruído de fase e produtos de intermodulação, devem atender aos limites de densidade espectral de potência apresentados na Figura I.1 e na Tabela I.1. Esses limites são aplicáveis para todos os níveis de potência permissíveis das bandas laterais superior e inferior.

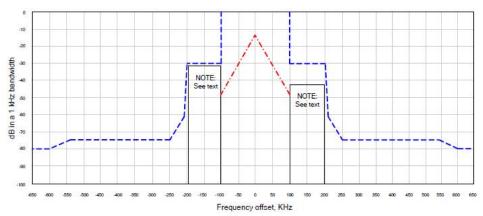


Figura I.1-Limites de emissão do Modo Híbrido e Híbrido Estendido HD Radio FM

Frequency Offset Relative to Carrier	Level, dBc/kHz				
100 – 200 kHz offset	-30.0				
200 - 207.5 kHz offset	[-30.0 - (frequency in kHz - 200 kHz) • 4.187]				
207.5 - 250 kHz offset	[-61.4 - (frequency in kHz - 207.5 kHz) • 0.306]				
250 – 540 kHz offset	-74.4				
540 - 600 kHz offset	[-74.4 - (frequency in kHz - 540 kHz) • 0.093]				
>600 kHz offset	-80.0				

Tabela I.1- Limites de emissão do modo Híbrido HD Radio FM (*)

(*) Os requisitos de limites e emissão de ruído e espúrios refletem critérios aceitáveis de desempenho. Em certas circunstâncias, medidas adicionais (filtragem, supressão de emissão ativa) podem ser necessárias para reduzir as emissões espectrais dentro dos limites com o objetivo de reduzir interferências entre estações radiodifusoras.

As bandas laterais superiores e inferiores podem diferir em até 10 dB (bandas assimétricas). Normalmente os níveis de potência das bandas laterais são iguais, porém em determinados cenários as bandas assimétricas podem ser úteis para mitigação de interferência de canal adjacente. A Figura I.1 apresenta a diferença de 10 dB apenas como ilustração. Mesmo que elas tenham níveis diferentes de potência, o limite das emissões espectrais para as duas bandas é o mesmo.

Na transmissão do modo Todo Digital os requisitos também envolvem o ruído e os sinais espúrios. Os limites de densidade espectral de potência devem estar conforme a Figura I.2 e a Tabela I.2.

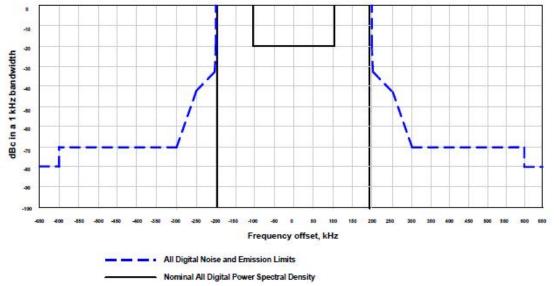


Figura I.2 - Limites de emissão do Modo Todo Digital HD Radio FM

Frequency Offset Relative to Carrier	Level, dBc/kHz			
200 - 207.5 kHz offset	[-20 - (frequency in kHz - 200 kHz) • 1.733]			
207.5 - 250 kHz offset	[-33 - (frequency in kHz - 207.5 kHz) • 0.2118]			
250 - 300 kHz offset	[-42 - (frequency in kHz - 250 kHz) • 0.56]			
300 - 600 kHz offset	-70			
>600 kHz offset	-80			

Tabela I.2 - Limites de emissão do Modo Todo Digital HD Radio FM

No Modo Todo Digital a região dentro de 100 kHz a partir do centro do canal deve ser reservada para subportadoras secundárias de baixo nível.

I.2.5. Canal de Controle do Sistema

O Canal de Controle do Sistema (SCCH) transporta informações de status e controle [20]. O controle do modo de serviços primário e secundários e o fator de escala de amplitude são enviados da Administração de Configuração para a Camada 1, enquanto que informação de sincronização é enviada da Camada 1 para Camada 2. Além disso, vários bits da sequência de dados de controle do sistema designados "reservados" são controlados nas camadas acima de L1 através da interface de controle de dados reservada primário e secundário.

Informações e controle são transportados em quadros discretos de transferência através de múltiplos canais lógicos. Esses quadros de transferência são também denominados como Unidades de Protocolo de Dados de Camada 2 (Layer 2 Protocol Data Units, L2 PDUs).

Os L2 PDUs variam em tamanho e formato dependendo do modo de serviço. O modo de serviço, o principal componente do controle do sistema, determina as características de transmissão de cada canal lógico. Após a avaliação dos requisitos das aplicações candidatas, camadas de protocolo mais altas selecionam modos de serviço que configuram os canais lógicos mais adequadamente. A variedade de canais lógicos reflete a flexibilidade intrínseca do sistema, o qual suporta entrega simultânea de várias combinações de dados e áudio digital.

Os modos de serviço determinam todas as configurações possíveis dos canais lógicos. Os modos de serviço primários ativos são MP1, MP2, MP3, MP11, MP5 e MP6, que configuram os canais lógicos primários. Os modos de serviço secundários ativos são MS1, MS2, MS3 e MS4, que configuram os canais lógicos secundários.

I.2.6. Canais Lógicos

Um canal lógico conduz L2 PDUs em quadros de transferência dentro da Camada 1 com um grau de serviço específico determinado pelo modo de serviço. A Camada 1 da interface aérea FM oferece onze (11) canais lógicos para protocolos de camadas mais altas. Nem todos os canais lógicos são usados em cada modo de serviço.

I.2.6.1. Canais Lógicos Primários

Existem cinco (5) canais lógicos primários que podem ser usados com as formas de onda Híbrida, Híbrida Estendida e Digital Total. Eles são denominados como P1, P2, P3, P4 e PIDS. O canal PIDS transmite informação de serviço da estação (*Station Information Service*, SIS). A Tabela I.3 apresenta a taxa de informação aproximada suportada por cada canal lógico primário como função do modo de serviço primário.

Service Mode		Approximate	Waveform			
Service Mode	P1	P2	P3	P4	PIDS	Wavelorin
MP1	98	N/A	N/A	N/A	1	Hybrid
MP2	98	N/A	12	N/A	1	Extended Hybrid
MP3	98	N/A	25	N/A	1	Extended Hybrid
MP11	98	N/A	25	25	1	Extended Hybrid
MP5	25	74	25	N/A	1	Extended Hybrid, All Digital
MP6	50	49	N/A	N/A	1	Extended Hybrid, All Digital

Tabela I.3-Taxa de informação aproximada dos canais lógicos primários

I.2.6.2. Canais Lógicos Secundários

Existem seis (6) canais lógicos secundários que são utilizados somente na forma de onda Digital Total. Eles são denominados S1, S2, S3, S4, S5 e SIDS. A Tabela I.4 apresenta a taxa de informação aproximada suportada por cada canal lógico secundário como função do modo de serviço secundário.

C	Approximate Information Rate (kbit/s)						
Service Mode	S1	S2	S3	S4	S5	SIDS	Waveform
MS1	0	0	0	98	6	1	All Digital
MS2	25	74	25	0	6	1	All Digital
MS3	50	49	0	0	6	1	All Digital
MS4	25	98	25	0	6	1	All Digital

Tabela I.4 - Taxa de informação aproximada dos canais lógicos secundários.

I.2.6.3. Funcionalidade de Canais Lógicos

Os canais lógicos P1 a P4 e S1 a S5 são designados para transmitir áudio e dados, enquanto que os canais Serviço de Dados Primário do IBOC (PIDS) e Serviço de Dados Secundário do IBOC (SIDS) são designados para transmitir dados do Serviço de Informação da Estação (*Station Information Service*, SIS).

O desempenho de cada canal lógico é completamente descrito através de três parâmetros de caracterização: transferência, latência e robustez. A codificação de canal, o mapeamento espectral, a profundidade de entrelaçamento e o atraso de diversidade digital são os componentes destes parâmetros de caracterização. O modo de serviço configura exclusivamente estes componentes dentro da Camada 1 para cada canal lógico ativo, assim determinando a caracterização apropriada de parâmetros.

Além disso, o modo de serviço especifica o enquadramento e a sincronização dos quadros de transferência por meio de cada canal lógico ativo. No documento "HD Radio Air Interface. Design Description Layer 1 FM" [20], capítulo 7, há a descrição detalhada dos canais lógicos e suas configurações.

I.2.7. Partições de frequência e convenções espectrais nos modos de transmissão

O sinal digital é modulado utilizando OFDM (multiplexação por divisão ortogonal de frequência). O OFDM é um esquema de modulação paralela no qual o fluxo de dados modula

um grande número de subportadoras ortogonais, que são transmitidas simultaneamente. O OFDM é flexível e permite mapeamento de canais lógicos de diferentes grupos de subportadoras.

As subportadoras OFDM são estruturadas em partições de frequências. Cada partição consiste de dezoito subportadoras de dados e uma subportadora de referência conforme apresentado na Figura I.3 (Ordenação A) e Figura I.4 (Ordenação B). A posição de cada subportadora de referência (Ordenação A ou B) varia com o local da partição de frequência dentro do espectro.

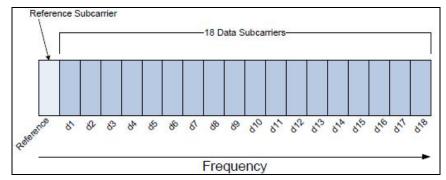


Figura I.3-Partição de frequência - Ordenação A

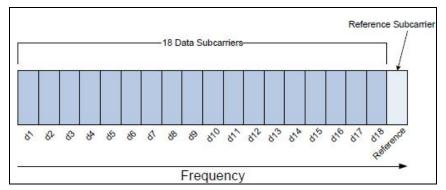


Figura I.4-Partição de frequência - Ordenação B

Para cada partição de frequência, as subportadoras de dados d1 até d18 transportam dados ou áudio codificado da Camada 2, enquanto que as subportadoras de referência transportam informações de controle do sistema da Camada 1. As subportadoras são numeradas de -546 até 0, que é a frequência central, e até 546 na parte superior final da alocação de frequências do canal.

Além das subportadoras de referência fixas dentro de cada partição de frequência, dependendo do modo de serviço, até cinco (5) subportadoras de referência adicionais podem ser inseridas no espectro nos seguintes números de subportadoras: -546, -279, 0, +279 e +546. O efeito geral é uma distribuição regular de subportadoras de referência pelo espectro. Para conveniência de notação, cada subportadora de referência possui identificação única entre 0 e 60. Todas as subportadoras de referência da banda lateral inferior são apresentadas na Figura I.5 e todas as superiores estão na Figura I.6. As figuras indicam a relação entre números de subportadoras de referência e número de subportadoras OFDM.

Cada espectro a ser descrito apresenta um número de subportadoras e uma frequência central de um certo conjunto de portadoras OFDM. A frequência central de uma subportadora é calculada multiplicando-se o número da subportadora pelo espaçamento de subportadora OFDM Δf . O

centro da subportadora 0 é localizado em 0 Hz. Neste contexto, a frequência central é relativa ao canal alocado de radiofrequência (RF).

Como exemplo, a banda lateral superior primária principal (*Primary Main*) está localizada entre as subportadoras 356 e 546 cujas frequências centrais são localizadas em 129,361 Hz e 198,402 Hz respectivamente. A largura de frequência da banda lateral superior primária principal é 69,041 Hz (198,402 Hz a 129,361 Hz).

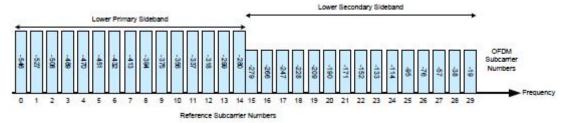


Figura I.5 - Mapeamento espectral de subportadoras de referência da banda lateral inferior

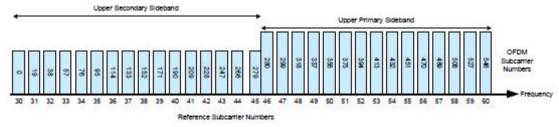


Figura I.6 - Mapeamento espectral de subportadoras de referência da banda lateral superior

I.2.7.1. Modo Híbrido

Neste modo o sinal digital é inserido em largura de faixa de 69.041 Hz, localizada a 129.361 Hz em cada lado do sinal analógico FM, tendo como referência a frequência da portadora [20]. A Figura I.7 apresenta a inserção do sinal digital.

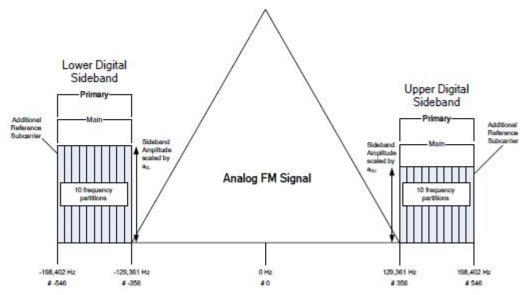


Figura I.7-Inserção do sinal digital junto ao sinal FM, Modo Híbrido, modo de serviço MP1

O sinal digital no Modo Híbrido IBOC é transmitido nas bandas laterais ao sinal analógico FM e cada banda está aproximadamente 23 dB abaixo da potência total do sinal FM. Estas bandas híbridas são denominadas de bandas laterais Primárias Principais (PM – *Primary Main*). Cada banda lateral PM consiste de 10 partições de frequência que são alocadas entre subportadoras 356 até 545, ou -356 a -545. As subportadoras 546 e -546, também incluídas nas bandas laterais PM, são adicionais. A amplitude de cada subportadora é escalonada por um fator de escala de amplitude, como indicado na Tabela I.5, que apresenta as características das bandas laterais primárias principais (PM) superior e inferior para o modo Híbrido.

Banda Lateral	Número de partições de frequência	de frequência		Freqüência de subportadoras (Hz em relação ao centro do canal)	0	Fator de escala de amplitude (*)	Observação
Primária Principal Superior	10	A	356 a 546	129,361 a 198,402	69,041	a0U	Inclui subport. ref. adicional 546
Primária Principal Inferior	10	В	-356 a -546	-129,361 a 198,402	69,041	a0L	Inclui subport. ref. adicional - 546

Tabela I.5-Resumo da forma de onda Híbrida, modo de serviço MP1

(*) A Referência [19] apresenta detalhes sobre os fatores de escala de amplitude.

Todas as subportadoras dentro da banda lateral inferior utilizam um fator de escala comum a0L, assim essas subportadoras têm a mesma amplitude relativa entre si. O mesmo ocorre na parte superior, com fator de escala a0U. Entretanto, a0L e a0U podem ser diferentes; as bandas laterais superior e inferior podem diferir no nível médio de potência em até 10 dB (bandas laterais assimétricas). Normalmente os níveis de potência das bandas laterais são iguais, mas em certos cenários, bandas assimétricas podem ser úteis para mitigação da interferência de canal adjacente. O documento "HD Radio FM Transmission System Specifications" [19] apresenta mais detalhes.

O sinal analógico hospedeiro pode ser tipo monofônico ou estéreo, podendo incluir canais de comunicação auxiliares (SCA).

I.2.7.2. Modo Híbrido Estendido

As bandas laterais digitais desse modo são estendidas em direção ao sinal analógico FM para aumento da capacidade digital. A forma de onda desse modo é criada pela adição de bandas laterais primárias estendidas (*PX* - *Primary Extended*) às bandas laterais primárias principais do Modo Híbrido. A Figura I.8 apresenta o espectro dessa forma de onda. Dependendo do modo de serviço, uma, duas ou quatro partições de frequência podem ser adicionadas no limite das bandas laterais primárias principais, próximas ao sinal analógico.

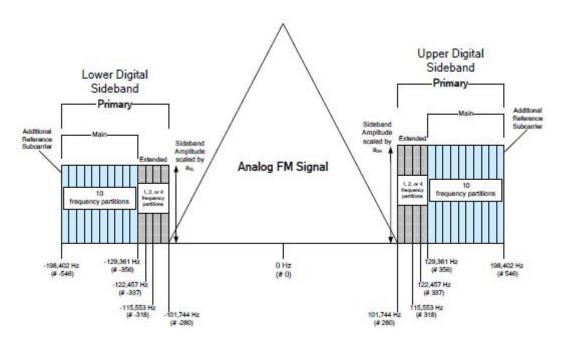


Figura I.8-Inserção do sinal digital junto ao sinal FM, modo híbrido estendido

Cada banda lateral primária consiste de 10 partições de frequência e uma subportadora de referência adicional abrangendo subportadoras 356 a 546, ou -356 a -546. As bandas laterais PX superiores incluem subportadoras 337 a 355 (uma partições de frequência), 318 a 355 (duas partições de frequência), ou 280 a 355 (quatro partições de frequência). As bandas laterais PX inferiores incluem subportadoras -337 a -355 (uma partições de frequência), -318 a -355 (duas partições de frequência), ou -280 a -355 (quatro partições de frequência).

A amplitude de cada subportadora é escalonada por um fator de escala em amplitude conforme indicado na Tabela I.6. Todas as subportadoras dentro da banda lateral inferior utilizam um fator de escala comum a0L, então elas tem mesma amplitude relativa em relação às outras. O mesmo acontece na banda lateral superior, em que as subportadoras utilizam o mesmo fator de escala a0U. Entretanto esses dois fatores podem ser diferentes, e as bandas laterais superiores e inferiores podem diferir em potência em 10 dB (bandas assimétricas). Tal como empregado na configuração híbrida, tem-se normalmente os níveis iguais de potência, mas em certos cenários, as bandas laterais assimétricas podem ser úteis para mitigação de interferência de canal adjacente [19].

A Tabela I.6 apresenta as características das bandas laterais primárias principais (PM) superior e inferior para o modo Híbrido Estendido.

Banda Lateral	Número de partições de frequência	Ordenação da partição de frequência	1	Frequência de subport. (Hz em relação ao centro do canal)	(Hz)	Fator de escala de amplitude (*)	Observação
Primária Principal Superior	10	A	356 a 546	129,361 a 198,402	69,041	a0U	Inclui subport. ref. adicional 546
Primária Principal Inferior	10	В	-356 a -546	-129,361 a -198,402	69,041	a0L	Inclui subport. ref. adicional - 546
Primária	1	A	337 a 355	122,457 a	6,540	a0U	

Estend.				128,997			
Superior (1 partição							
freq)							
Primária Estend. Inferior (1 partição freq)	1	В	-337 a -355	-122,457 a -128,997	6,540	a0L	
Primária Estend. Superior (2 partições freq)	2	A	318 a 355	155,553 a 128,997	13,444	a0U	
Primária Estend. Inferior (2 partições freq)	2	В	-318 a -355	-155,553 a - 128,997	13,444	a0L	
Primária Estend. Superior (4 partições freq)	4	A	280 a 355	101,744 a 128,997	27,253	a0U	
Primária Estend. Inferior (4 partições freq)	4	В	-280 a -355	-101,744 a - 128,997	27,253	a0L	

Tabela I.6-Resumo da forma de onda Híbrida Estendida, modos de serviço MP2, MP3, MP11, MP5 e MP6

I.2.7.3. Modo Todo Digital

Esse modo substitui o sinal analógico com sinais digitais adicionais e também inclui os sinais digitais dos Modos Híbrido e Híbrido Estendido. As bandas laterais digitais são estendidas da mesma forma que ocorre no Modo Híbrido Estendido e o sinal analógico é removido e substituído por bandas laterais secundárias de baixa potência, promovendo o aumento da capacidade digital. O espectro dessa forma de onda é apresentado na Figura I.9.

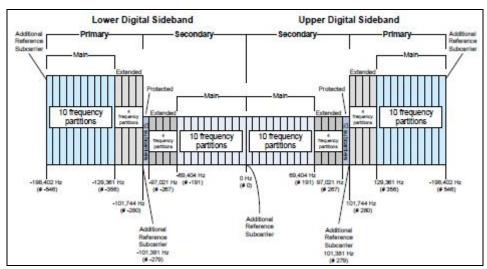


Figura I.9 - Espectro do Modo Digital Total, modos de serviço MP5 e MP6, MS1 até MS4

Além das 10 (dez) principais partições de frequência, todas as 4 (quatro) partições de frequência estendidas estão presentes em cada banda lateral primária de toda a forma de onda Todo Digital. Cada banda secundária também possui 10 (dez) partições de frequência principais secundárias principais (*Secondary Main*, SM) e 4 (quatro) secundárias estendidas (*Secondary Extended*, SX). Diferentemente das bandas laterais primárias, entretanto, as partições de frequência secundárias principais são mapeadas próximas ao centro do canal, com as partições secundárias estendidas mais distantes do centro.

Cada banda lateral secundária também suporta uma pequena região denominada Protegida Secundária (SP) que consiste em 12 (doze) subportadoras OFDM e as subportadoras de referência #279 e #-279. Essas subportadoras são referidas como "protegidas" porque estão localizadas na área do espectro menos provável de ser afetada por interferência digital ou analógica. Uma subportadora de referência adicional é colocada no centro do canal (#0). A ordenação da partição de frequência da região SP não se aplica, uma vez que a região SP não contém partições como definidas nas Figura I.1 e Figura I.2.

A faixa espectral total do modo Digital Total é 396,803 Hz. A amplitude de cada subportadora é escalonada por um fator de escala de amplitude conforme detalhado na Referência [20]. Os fatores de escala de amplitude das bandas laterais secundárias, a2 até a5, são selecionadas pelo usuário.

I.2.8. Níveis das bandas laterais digitais

O escalonamento de amplitude de cada subportadora OFDM dentro de cada banda lateral é dado na Tabela I.7 para os 3 (três) modos de operação. Os valores dos Modos Híbrido e Híbrido Estendido são especificados em relação à potência analógica FM. O valor 1 (um) produziria potência de subportadora igual à potência total da portadora FM analógica não modulada. Os valores para o Modo Todo Digital são relativos à potência digital autorizada alocada para este modo.

Waveform Hybrid Extended Hybrid	Service Mode	Sidebands	Amplitude Scale Factor Notation	Power S Density, dBc per	•	Power Spectral Density in a 1 kHz Bandwidth dBc			
			Notation	Min	Max	Min	Max		
Hybrid	MP1	Primary	a _{oL}	-45.8	-35.8	-41.4	-31.4		
	IVII	Timary	a _{ou}	-45.8	-45.8 -35.8		-31.4		
Cutonded Unbrid	MP2, MP3,	Drimon	a _{0L}	-45.8	-35.8	-41.4	-31.4		
Extended Hybrid	MP11, MP5, MP6	Primary	a _{DU}	-45.8	-35.8	-41.4	-31.4		
	MP5, MP6	Primary	a ₁		-27.3		-22.9		
		Secondary	a ₂		-32.3		27.9		
Hybrid Extended Hybrid All Digital	MS1 – MS4	Secondary	a ₃		-37.3	-	32.9		
	WIST - WIS4	Secondary	a ₄		-42.3	1	37.9		
		Secondary	a ₅	6	47.3	-42.9			

Tabela I.7-Escalonamento de subportadoras OFDM

Para os Modos Híbrido e Híbrido Estendido os valores mínimos de a0U e a0L foram escolhidos para que a potência média total na banda lateral primária principal (superior ou inferior) seja 23 dB abaixo da potência da portadora FM analógica não modulada. A potência de cada banda lateral primária pode ser individualmente aumentada de acordo com os valores máximos mostrados na Tabela I.7. Entretanto a potência média total em cada banda lateral primária principal (superior ou inferior) está sujeita ao limite superior de 13 dB abaixo da potência da portadora FM analógica não modulada.

Para o Modo Todo Digital, o valor de a1 foi escolhido de tal forma que a potência média de todas as subportadoras digitais primárias combinadas é igual a 1 (um). Os valores de a2 a a5 foram escolhidos de tal forma que a potência média total nas subportadoras digitais secundárias (superior e inferior) estejam na faixa de 5 a 20 dB abaixo da potência total nas subportadoras digitais primárias. A escolha de um valor de a2 até a5 é determinada pela seleção do fator de escala de amplitude (ASF) recebida de L2.

I.2.8.1. Potência da portadora digital FM Híbrida e Híbrida Estendida

As transmissões Híbridas utilizam dois conjuntos de subportadoras OFDM localizadas até 198 kHz acima e abaixo da frequência central da portadora analógica. O Modo de serviço Híbrido básico (MP1) utiliza 191 subportadoras por banda lateral na frequência aproximadamente ±129 kHz da frequência central. Os modos de serviço híbrido estendido MP2, MP3, e MP11 adicionam subportadoras adicionais próximas à portadora analógica, com subportadoras MP11 iniciando em aproximadamente ±101 kHz.

Como apresentado na Figura I.10, cada partição de frequência consiste de 19 subportadoras (exceto por 2 subportadoras de referência extras no limite das partições primárias principais). Na banda lateral digital inferior, a Figura I.10 também detalha cada grupo de bandas laterais para cada modo de serviço híbrido. A potência de cada subportadora é colocada em -45,8 dBc (dB abaixo da portadora analógica de referência) para razão de potência total integrada digital para analógica de -20 dBc no modo de serviço MP1.

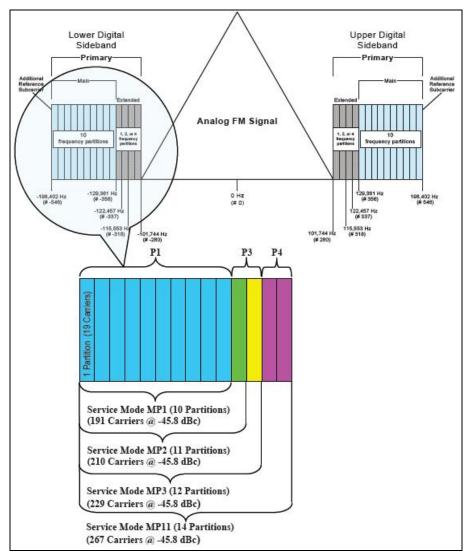


Figura I.10 - Modo Híbrido Estendido

II. Resultados tabelados

II.1. Detalhes das rotas utilizadas nas medições HD Radio

Neste apêndice são descritos os detalhes sobre a localização e as medições das rotas.

Ponto	Distancia ao transmissor (km)	Latitude [GMS]	Longitude [GMS]
Ponto de referência	6,43	-23°35'13.4052"	-46°37'58.4832"
C1P1	14,09	-23°30'53.0388"	-46°32'49.8912"
C1P2	18,96	-23°30'54.162"	-46°29'52.872"
C1P3	23,29	-23°30'55.2708"	-46°27'17.028"
C1P4	21,54	-23°32'35.0088"	-46°28'8.7492"
C1P5	15,36	-23°31'52.9752"	-46°31'51.0132"
C5P1	14,38	-23°38'23.5068"	-46°46'50.0772"
C5P2	17,01	-23°39'31.194"	-46°47'47.5512"
C5P3	18,92	-23°40'31.7388"	-46°48'15.5268"
C5P4	18,04	-23°40'34.6368"	-46°47'23.82"
C5P5	15,87	-23°39'37.7388"	-46°46'38.3628"
C6P1	10,63	-23°33'44.5032"	-46°47'0.6432"
C6P2	12,42	-23°33'19.5372"	-46°48'6.8292"
C6P3	11,65	-23°32'17.0808"	-46°47'38.1588"
C6P4	9,57	-23°32'35.5488"	-46°46'26.3388"
R1P1	3,18	-23°34'26.958"	-46°39'56.1492"
R1P2	10,88	-23°38'7.35"	-46°37'49.5552"
R1P3	21,41	-23°43'45.4368"	-46°36'24.9948"
R1P4	39,63	-23°53'21.858"	-46°33'55.2672"
R1P5	47,48	-23°54'54.7092"	-46°26'26.0052"
R2P1	3,39	-23°34'16.7052"	-46°42'10.044"
R2P2	10,69	-23°34'59.898"	-46°46'41.6352"
R2P3	26,43	-23°42'21.7008"	-46°52'29.5932"
R2P4	44,91	-23°52'0.5052"	-46°57'8.3232"
R2P5	60,54	-23°56'29.3028"	-47°5'32.748"
R4P1	3,14	-23°31'14.5632"	-46°40'44.5908"
R4P2	11,79	-23°27'53.8632"	-46°45'3.2472"
R4P3	24,95	-23°21'5.5152"	-46°47'47.8428"
R4P4	47,55	-23°11'18.9528"	-46°55'52.104"
R4P5	61,66	-23°5'21.3828"	-47°1'5.5092"
R6P1	3,23	-23°32'56.67"	-46°38'54.978"
R6P2	9,79	-23°32'35.4552"	-46°35'4.0128"
R6P3	29,81	-23°28'14.2248"	-46°24'2.5092"
R6P4	45,28	-23°26'24.3528"	-46°15'8.4492"
R6P5	60,94	-23°20'28.3092"	-46°7'39.0612"

Tabela II.1-Detalhes da localização dos pontos de medições HD Radio

Percurso	Rota	Comprimento (km)
R1P1 a R1P2	30,0	11,3
R1P2 a R1P3	13,4	12,4
R1P3 a R1P4	18,8	19,0
R1P4 a R1P5	37,2	31,1
R2P1 a R2P2	14,0	8,9
R2P2 a R2P3	20,2	19,7
R2P3 a R2P4	19,9	21,0
R2P4 a R2P5	17,0	19,5

R4P1 a R4P2	15,8	11,7
R4P2 a R4P3	13,0	14,2
R4P3 a R4P4	22,3	24,5
R4P4 a R4P5	13,9	14,8
R6P1 a R6P2	13,7	8,1
R6P2 a R6P3	28,4	26,2
R6P3 a R6P4	17,9	16,4
R6P4 a R6P5	16,2	18,3
C1P1 a C1P2	13,4	5,6
C1P2 a C1P3	12,9	5,0
C1P3 a C1P4	14,0	6,1
C1P4 a C1P5	18,2	8,1
C1P5 a C1P1	6,6	5,1
C5P1 a C5P2	8,4	3,2
C5P2 a C5P3	8,0	2,3
C5P3 a C5P4	8,4	3,0
C5P4 a C5P5	16,8	2,5
C5P5 a C5P1	17,7	3,3
C6P1 a C6P2	15,7	3,3
C6P2 a C6P3	7,7	2,3
C6P3 a C6P4	15,5	3,9
C6P4 a C6P1	9,7	2,7
		-

Tabela II.2-Detalhes dos trechos para medições móveis

II.2. Detalhes dos Resultados das Medições HD Radio

Nas tabelas a seguir são apresentados os detalhes dos resultados.

Ponto	Distancia ao transmissor (km)	RX Mode=1 (%)	Campo Digital Mediano (dBuV/m)	SNR Mediano (dB)	Campo Analógico Mediano (dBuV/m)				
Ponto de referência	6,43	100	62,41	17,42	79,76				
C1P1	14,09	94,79	58,25	3,13	70,76				
C1P2	18,96	99,93	59,94	4,46	69,52				
C1P3	23,29	0	47,41	-3,04	46,56				
C1P4	21,54	0	42,62	-3,04	48,23				
C1P5	15,36	100	50,39	7,75	69,88				
C5P1	14,38	96,26	63,73	11,03	58,97				
C5P2	17,01	100	58,68	7,89	76,08				
C5P3	18,92	0	50,81	-0,63	57,89				
C5P4	18,04	0,07	53,16	1,32	67,65				
C5P5	15,87	100	59,95	9,3	71,37				
C6P1	10,63	100	51,91	15,39	65,05				
C6P2	12,42	100	70,46	16,45	84,78				
C6P3	11,65	100	69,26	18,72	79,86				
C6P4	9,57	99,97	56,07	12,72	65,22				
R1P1	3,18	100	73,26	9,68	92,49				
R1P2	10,88	99,97	53,53	8,17	67,73				
R1P3	21,41	0	60,43	0,16	62,95				
R1P4	39,63	56,53	43,59	1,87	57,96				
R1P5	47,48	0	25,42	-10	30,66				
R2P1	3,39	100	72,56	12,29	88,83				
R2P2	10,69	100	65,39	15,29	81,06				
R2P3	26,43	100	47,83	11,19	61,01				
R2P4	44,91	0	33,41	-3,04	48,04				
R2P5	60,54	0	20,60	-10	27,02				
R4P1	3,14	100	78,08	17,08	92,70				
R4P2	11,79	100	52,90	7,79	68,86				
R4P3	24,95	100	43,58	8,25	53,79				
R4P4	47,55	0	34,56	-10	34,86				
R4P5	61,66	0	35,41	-10	32,49				
R6P1	3,23	100	70,90	8,52	88,63				
R6P2	9,79	100	67,89	15,61	82,88				
R6P3	29,81	100	63,20	17,63	77,12				
R6P4	45,28	99,97	37,09	8,03	53,62				
R6P5	60,94	3,15	25,29	0,5	38,88				

Tabela II. 3-Resultados do HD Radio para recepção em pontos fixos

Pontos	Distância em relação ao transmissor (km)	Média Aritmética das Notas do receptor	Média Aritmética das Notas do receptor	Qualidade do Áudio FM	Intensidade do Campo Elétrico Analógico Mediano (dBµV/m)						
	(KIII)	NKS	TOSHIBA								
Ponto de referência	6,43	3,5	4,1	3,8	79,76						
C1P1	14,09	3,5	1,7	2,6	70,76						
C1P2	18,96	4,2	4,5	4,3	69,52						
C1P3	23,29	1,0	1,0	1,0	46,56						
C1P4	21,54	1,1	1,6	1,3	48,23						
C1P5	15,36	3,2	1,2	2,2	69,88						
C5P1	14,38	2,5	1,1	1,8	58,97						
C5P2	17,01	4,3	4,8	4,5	76,08						
C5P3	18,92	4,2	4,3	4,2	57,89						
C5P4	18,04	4,3	4,4	4,3	67,65						
C5P5	15,87	1,6	3,2	2,4	71,37						
C6P1	10,63	3,9	4,3	4,1	65,05						
C6P2	12,42	2,4	2,2	2,3	84,78						
C6P3	11,65	4,1	4,6	4,4	79,86						
C6P4	9,57	3,5	4,0	3,7	65,22						
R1P1	3,18	2,9	4,0	3,5	92,49						
R1P2	10,88	3,0	1,4	2,2	67,73						
R1P3	21,41	4,1	4,0	4,0	62,95						
R1P4	39,63	4,4	1,2	2,8	57,96						
R1P5	47,48	1,1	1,0	1,1	30,66						
R2P1	3,39	3,6	3,1	3,3	88,83						
R2P2	10,69	4,2	4,5	4,4	81,06						
R2P3	26,43	1,8	4,2	3,0	61,01						
R2P4	44,91	1,0	1,0	1,0	48,04						
R2P5	60,54	1,0	1,1	1,0	27,02						
R4P1	3,14	3,7	4,2	3,9	92,70						
R4P2	11,79	2,1	3,8	3,0	68,86						
R4P3	24,95	3,8	3,1	3,4	53,79						
R4P4	47,55	1,0	1,1	1,0	34,86						
R4P5	61,66	1,0	1,0	1,0	32,49						
R6P1	3,23	3,6	2,6	3,1	88,63						
R6P2	9,79	3,1	4,1	3,6	82,88						
R6P3	29,81	4,5	4,5	4,5	77,12						
R6P4	45,28	1,0	1,0	1,0	53,62						
R6P5	60,94	1,3	1,3	1,3	38,88						

Tabela II.4-Resultados do áudio FM para recepção em pontos fixos

III. Procedimento para obtenção da Intensidade de Campo Elétrico Digital

O receptor profissional HD Radio registra a intensidade do campo elétrico da portadora do sinal analógico. No entanto não disponibiliza a intensidade de campo elétrico do sinal digital. Como a relação de proteção entre o sinal analógico e digital, definido para a transmissão simulcast com antenas separadas, não permanece quando ambos os sinais são irradiados, variando de acordo com o ambiente, faz-se necessário o registro de medição do sinal digital em cada ponto de medida. Portanto, este item descreve o procedimento utilizado para cálculo da intensidade de campo elétrico referente ao sinal digital. Antes do início dos testes oficiais, o engenheiro da empresa iBiquity sugeriu uma metodologia para a obtenção desse parâmetro, a qual se encontra descrita logo abaixo. No entanto, após análise da metodologia pela equipe técnica de medição, melhorias foram propostas, sendo essa metodologia modificada utilizada durante toda a campanha de medição. A seguir será detalhada a metodologia proposta pela iBiquity bem como as melhorias implementadas pela equipe técnica de medição.

III.1. Metodologia proposta pela iBiquity

A metodologia proposta pela iBiquity consiste nos seguintes passos:

 a) Escolher um raio entre 1 a 2 km do transmissor e traçar um círculo, conforme Figura III.1.

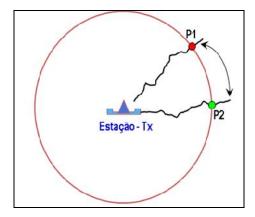


Figura III.1-Raio para determinação da relação de potência entre os sinais analógico e digital

- b) Escolher na direção de cada radial do planejamento da campanha de medição um ponto com visada direta, e em cada ponto escolhido capturar (*print screen*) 6 (seis) telas do analisador de espectro no modo ACPR (*Adjacent Channel Power Ratio*), sendo 5 (cinco) delas com detecção instantânea e uma no modo *average*.
- c) Por meio das cinco telas do analisador de espectro com detecção instantânea, calcular o valor do ACPR médio para cada banda lateral, ou seja, banda lateral superior e inferior do sinal digital, por meio da seguinte equação:

$$ACPRAvg = 10 * log_{10}(Z),$$

onde

$$Z = \frac{10^{\frac{ACPR_{5}}{10}} + 10^{\frac{ACPR_{2}}{10}} + 10^{\frac{ACPR_{5}}{10}} + 10^{\frac{ACPR_{5}}{10}} + 10^{\frac{ACPR_{5}}{10}}}{5}.$$

sendo ACPR_n o valor da medida de potência existente nos canais adjacentes, referente a cada *print screen* coletado com o analisador de espectro com detecção instantânea.

d) Determinar a potência total do sinal digital por meio dos valores dos ACPR_{Avg} calculado para cada banda lateral, conforme equação abaixo:

$$Pot_{Total} = 10 * log_{10} \left(10 \frac{\frac{ACPR_{Avg(BandaSuperior)}}{10} + 10 \frac{ACPR_{Avg(BandaInferior)}}{10} \right)$$

e) De posse da última tela, *print screen*, obtida com o analisador de espectro no modo *average*, calcula-se a potência média total, da seguinte maneira:

$$Pot_{M\acute{e}diaTotal} = 10 * log_{10} \left(10^{\frac{ACPR_a}{10}} + 10^{\frac{ACPR_b}{10}} \right)$$

sendo:

ACPR_a o valor ACPR da banda superior do sinal digital obtida com o analisador de espectro no modo *average*;e

 $ACPR_b$ o valor ACPR da banda inferior do sinal digital obtida com o analisador de espectro no modo *average*.

f) Por fim, calcula-se a diferença entre a potência média total e a potência total, que corresponde à diferença das potências recebidas entre o sinal analógico e digital, conforme equação abaixo:

g) O valor de Dif pode, então, ser aplicado à intensidade de campo elétrico analógico para se obter o valor da intensidade de campo elétrico do sinal digital.

Pelo método proposto, o valor de Dif seria aplicado para toda a radial. No entanto, a relação de proteção dos sinais analógico e digital se altera de um ponto para outro, o que poderia prejudicar a análise final da campanha.

A seguir, um exemplo de cálculo proposto pela metodologia da iBiquity para obtenção da intensidade do campo elétrico digital é mostrado. Por meio da Tabela III.1 é possível verificar passo a passo a aplicação de todas as equações acima, obtendo assim a diferença entre as intensidades de campo elétrico dos sinais analógico e digital. A Figura III.2 até Figura III.6 correspondem aos cinco pontos, que estão na direção das radiais planejadas para realização dos testes.

Ponto	Banda	ACPR #1	ACPR #2	ACPR #3	ACPR #4	ACPR #5	ACPR Avg	Potência Total	Potência Média	Potência Média Total	Diff	
Ponto 1	*USB	-7.2	-3.6	-10.5	-3.5	-8.1	-5.791362373	0.400702540	1.5	F 00070	E 4000E	
Polito	**LSB	-7.2	4.2	-5.6	-4.7	-4.3	-1.184308992	0.106703546	2.8	5.20876	5.10205	
Ponto 2	USB	-10	-10.6	-10.6	-9	-8.2	-9.574706489	-6.379899235	-4.8	-1.63711	4.74278	
Polito 2	LSB	-8.9	-10.9	-9.4	-9.5	-7.9	-9.213212162	-0.379699233	-4.5	-1.03/11	4.74270	
Ponto 3	USB	-5.4	-5.9	-3.3	-4	-5.9	-4.766894458	-1.220976364	0	2.96058	4.18156	
Polito 3	LSB	-5.2	-4.6	-1.9	-3.4	-4.5	-3.754522858	-1.220970304	-0.1	2.90000	4.10130	
Ponto 4	USB	-2.7	-4.4	-3.3	-2.3	-3	-3.084100564	0.319285974	5	0.01020	7.69101	
Polito 4	LSB	-2.7	-3.2	-1.9	-1.9	-2.1	-2.330571985	0.319265974	5	8.01029	7.09101	
Danta 5	USB	-11.6	-15	-9.7	-11.3	-12.6	-11.71284801	10 50101701	-8	0.00000	4.40.400	
Ponto 5	LSB	-16	-16.6	-18.5	-16.9	-15.7	-16.63722094	-10.50124734	-11.5	-6.39626	4.10498	

Tabela III.1-Exemplo da metodologia proposta pela iBiquity

^{**} Banda Lateral Inferior

Figura III.2-Ponto 1: distância ao transmissor de 1060 m

^{*}Banda Lateral Superior

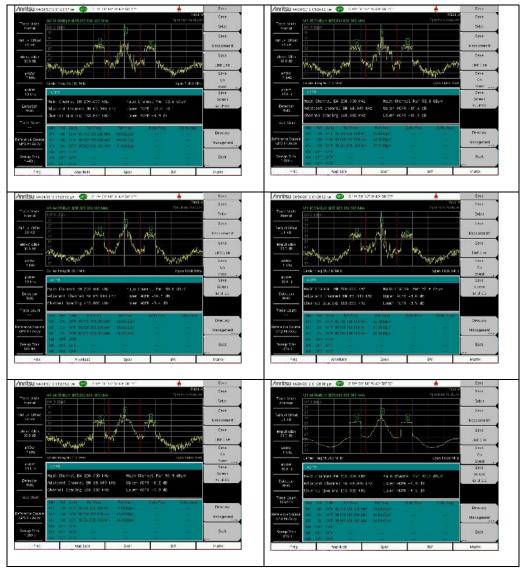


Figura III.3-Ponto 2: distância ao transmissor de 1100 m

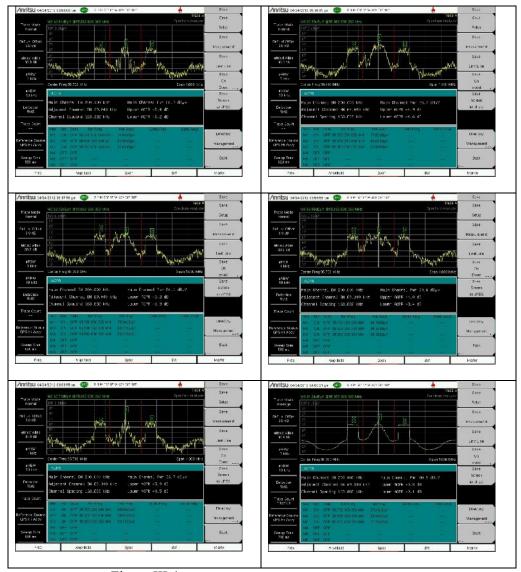


Figura III.4-Ponto 3: distância ao transmissor de 996 m

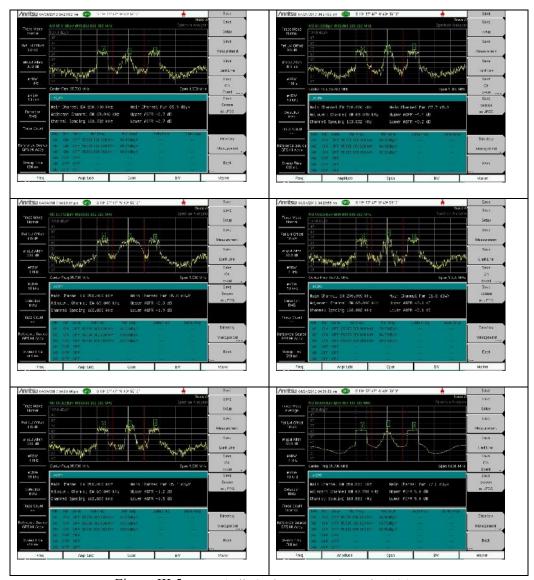


Figura III.5-Ponto 4: distância ao transmissor de 1134 m

Figura III.6-Ponto 5: distância ao transmissor de 1150 m

III.2. Melhorias na Metodologia proposta pela iBiquity

Com o intuito de melhorar a metodologia proposta pela iBiquity foram realizadas as seguintes alterações:

- a) Um software de captura de traços do analisador de espectro foi desenvolvido pela equipe do Inmetro. Assim, a cada 1,2 segundos, todas as informações da tela do analisador eram armazenadas em arquivo Excel para posterior processamento com o software desenvolvido com a ferramenta MatLab. Assim, ao invés de ter cinco telas *print screen* com detecção instantânea em cada ponto, tem-se o equivalente a 150 telas num período de 3 minutos de medição com o analisador de espectro com detecção instantânea e mais 3 minutos de medição com o analisador no modo *average*, melhorando consideravelmente a precisão do valor Dif.
- b) O software HD Profissional fornece os dados a cada 100 milissegundos, assim, na campanha móvel não foi possível sincronizar diretamente as amostras do software HD

- profissional com o analisador de espectro. Nesse caso, o valor mediano de cada 12 amostras do software HD Profissional foi sincronizado com um traço do analisador de espectro.
- c) Para validar o item "b", as intensidades de campo elétrico do sinal analógico oriundas do software HD Radio e do analisador de espectro foram comparadas e o erro ocorreu na décima casa decimal, portanto, considerado aceitável.

Com a automatização, foi possível determinar o valor da intensidade de campo elétrico digital em cada ponto fixo e em movimento, sendo, portanto, um método mais preciso do que o proposto pela iBiquity, que iria atribuir o valor Dif para toda a radial.

IV. Arquivo de Medição do Sistema HD Radio

Este apêndice apresenta uma parte do arquivo de medições (30 amostras) do ponto R1P1 com todos os campos coletados pelo software *HD Prospector Field Test System* do receptor profissional HD Radio. Em cada ponto fixo a medição coleta aproximadamente 3000 amostras. Na medição em mobilidade a quantidade de amostras depende da distância entre dois pontos fixos.

Date (DD/MM/YY)	Time UTC -3	Time (File Start)	Distance to TX	Latitude	Longitude	Vali dity	# Satellites	Altitude (meters)		Track (degrees)	Freq	Analog FI dBuV	Rx Mode	AM/FM	Svc Mode	Acq Status	SIS CRC Status	Dig Aud Acq	Audio Pgms Avail	Current Pgm	DAAI	SIS Frm Acq	Audio Acq Time	Quality Indicator	SNR	Blend Count	Frame Count	Core Frame Errors	Enh Frame Errors
14/04/2012	11:11:51	600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74589	0	0
14/04/2012	11:11:51	600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74589	0	0
14/04/2012	11:11:51	600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74594	0	0
14/04/2012	11:11:52	800	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	68	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74594	0	0
14/04/2012	11:11:52	900	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	68	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74598	0	0
14/04/2012	11:11:52	900	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74598	0	0
14/04/2012	11:11:52	1000	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74602	0	0
14/04/2012	11:11:52	1202	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	68	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74602	0	0
14/04/2012	11:11:52	1400	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	68	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74607	0	0
14/04/2012	11:11:52	1500	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74607	0	0
14/04/2012	11:11:52	1600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74611	0	0
14/04/2012	11:11:52	1600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74611	0	0
14/04/2012	11:11:52	1703	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74615	0	0
14/04/2012	11:11:53	1800	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,49	28	74615	0	0
14/04/2012	11:11:53	1900	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74619	0	0
14/04/2012	11:11:53	1900	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74619	0	0
14/04/2012	11:11:53	2000	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74624	0	0
14/04/2012	11:11:53	2203	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74624	0	0
14/04/2012	11:11:53	2400	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74628	0	0
14/04/2012	11:11:53	2500	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74628	0	0
14/04/2012	11:11:53	2600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74632	0	0
14/04/2012	11:11:53	2600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74632	0	0
14/04/2012	11:11:53	2600	2,05438571	-19,957825	-43,91381	2	7	1127,5	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74637	0	0
14/04/2012	11:11:54	2800	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74637	0	0
14/04/2012	11:11:54	2900	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74641	0	0
14/04/2012	11:11:54	2900	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74641	0	0
14/04/2012	11:11:54	3000	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	67	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74645	0	0
14/04/2012	11:11:54	3202	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	66	1	1	1	1	1	1	10000000	0	15	23	110	15	15,43	28	74645	0	0
14/04/2012	11:11:54	3400	2,05438571	-19,957825	-43,91381	2	7	1127,6	0	26,2	95,7	66	1	1	1	1	1	1	10000000	0	15	23	110	15	15,56	28	74650	0	0

BIBLIOGRAFIA

- [1] Doc, NRSC-5-C, In-band/on-channel Digital Radio Broadcasting Standard, Set, 2011
- [2] Doc, No, SY_SSS-1026s rev, F, HD Radio FM Transmission System Specifications, iBiquity Digital Corporation, 8/25/11.
- [3] Doc, No, SY_SSS-1082s rev, F, HD Radio AM Transmission System Specifications, iBiquity Digital Corporation, 8/24/11.
- [4] Ibiquity Digital Corporation, HD Radio: How it Works, Disponível em: http://www.ibiquity.com/hd_radio/hdradio_how_does_it_work. Data de acesso: 27 de abril de 2012.
- [5] Shuldiner, Albert, [Memorando] 13 abr, 2005, Columbia [para] IBOC Standards Development Working Group e DAB Subcommittee, 6f, iBiquity patent disclosure.
- [6] FCC MM Docket No, 99-325. First report and order: Digital Audio Broadcasting Systems and their impact on the terrestrial radio broadcast service, 11 out. 2002
- [7] Ibiquity Digital Corporation, 2010 Station Guide. Disponível em: http://www.ibiquity.com/i/pdfs/HDRadio_Station_%20Guide_lores_Dec2009.pdf, Data de acesso: 27 de abril de 2012.
- [8] HD Radio Alliance. New HD Radio technology launches in Mexico, Disponível em: http://www.hdradio.com/news-buzz/new-hd-radio-technology-launches-in-mexico, Data de acesso: 27 de abril de 2012.
- [9] Ibiquity Digital Corporation. HD Radio Broadcasting Around the World. Disponível em: http://www.ibiquity.com/international, Data de acesso: 27 de abril de 2012.
- [10] Ibiquity Digital Corporation, Field report AM IBOC nighttime performance, 20 out. 2003.
- [11] Ibiquity Digital Corporation, AM nighttime compatibility study report, 23 maio, 2003.
- [12] Ibiquity Digital Corporation, AM All-digital IBOC field test report, 12 abril, 2002.
- [13] Ibiquity Digital Corporation, FM All-digital IBOC field test report, 1 fev. 2002.
- [14] Ibiquity Digital Corporation, FM Hybrid IBOC field test results, dez. 2000.
- [15] Ibiquity Digital Corporation, Experimental test report on IBOC DAB field tests using KWNR-FM, Las Vegas, Nevada, 2000.
- [16] National Public Radio, Tomorrow Radio field testing in the Washington, D.C., New York City, San Francisco, and Los Angeles (Long Beach) Radio Markets, 6 fev. 2004.
- [17] Kean, J, HD Radio coverage measurement and prediction, Proceedings of the International Symposium on Advanced Radio Technologies, pp,123-130, fev. 2007.
- [18] Recommendation ITU-R BS,1114-7 Systems for terrestrial digital sound broadcasting to vehicular, portable and fixed receivers in the frequency range 30-3000 MHz, 2011.

- [19] Ibiquity Digital Corporation, HD Radio FM Transmission System Specifications, SY SSS 1026s Revisão F, August 24, 2011
- [20] Ibiquity Digital Corporation, HD Radio Air Interface, Design Description Layer 1 FM, SY_IDD_1011s Revision G, August 23, 2011
- [21] Ibiquity Digital, Transmission Signal Quality Metrics for FM IBOC Signals, SY_TN_2646s Revision 02, August 24, 2011
- [22] Recommendation ITU-R BS.1284-1: General methods for the subjective assessment of sound quality, 2003
- [23] Anatel, Regulamento Técnico para Emissoras de Radiodifusão Sonora em Frequência Modulada (Resolução nº67, de 12 de novembro de 1998, D.O.U., 26/03/1999 Alterada pela resolução nº 349, de 25 de setembro de 2003).
- [24] Rec. ITU-R BS. 412-9: Planning standards for terrestrial FM sound broadcasting at VHF, 1998.
- [25] Anatel (2008), "SIGAnatel Sistema de Informações Geográficas". Disponível em http://sistemas.anatel.gov.br/siganatel
- [26] Guia para Avaliação do Sistema de Rádio Digital FM IBOC, Junho 2007. Disponível em http://www.anatel.gov.br/Portal/
- [27] Ibiquity Digital, HD Radio Air Interface Design Description Layer 1 AM. SY_IDD_1012s Revision F, August 23, 2011
- [28] Rec. ITU-R P.1411-3 Propagation data and prediction methods for the planning of short-range outdoor communications systems and radio local area networks in the frequency range 300 MHz to 100 GHz, 2005